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ABSTRACT
This document introduces the Workshop on Verification and

Validation (V&V) of CFD for Offshore Flows, to be held during
OMAE2012. It presents a brief introduction to the purpose of
Verification and Validation with the identification of the goals of
code and solution verification and validation. Within this con-
text, three test-cases are proposed: Case-I of code verification,
Case-II of solution verification and Case-III of solution verifi-
cation and validation. Case-I consists on a 3D manufactured
solution of an unsteady turbulent flow. Case-II is an exercise
on the canonical problem of the infinite smooth circular cylinder
flow at different Reynolds numbers. Case-III is a more complex
flow around a straked-riser. The participants are asked to per-
form at least one of these test-cases. The objectives for the three
proposed test-cases are presented, together with a detailed de-
scription of the numerical settings to be used, and the results to
be obtained and sent to the Workshop organization. At the end
some considerations on general conditions, paper submission,
deadlines, and encouragements are stated.

NOMENCLATURE
V = (Vx,Vy,Vz) Velocity field [m/s]
Vre f Reference velocity [m/s]
p Pressure [N/m2]
pre f Reference pressure [N/m2]
ρ Water density [kg/m3]
µ Water dynamic viscosity [N.s/m2]

ν Water kinematic viscosity [m2/s]
F = (Fx,Fy,Fz) Forces [N]
Lre f Reference length [m]
D Cylinder/riser diameter [m]
L Cylinder/riser length [m]
A = D×L Projected area [m2]

Re = Vre f Lre f
ν

Reynolds number [−]
CD = Fx

1
2 ρV 2

re f A
Drag coefficient [−]

CDavg Time-averaged drag coefficient [−]
CL =

Fy
1
2 ρV 2

re f A
Lift coefficient [−]

CL,Dmax Maximum of lift and drag coefficient [−]
∆CL,D Amplitude of lift and drag coefficient [−]
CL,DRMS RMS of lift and drag coefficient [−]
Cp =

p−pre f
1
2 ρV 2

re f
Pressure coefficient [−]

t Time [s]
Tre f Reference time [s]
St = Lre f

Vre f Tre f
Strouhal number [−]

θ Cylinder circumferential coordinate [◦]

INTRODUCTION
Nowadays Computational Fluid Dynamics (CFD) is an en-

gineering tool used in many practical applications, also in the
offshore field. But given the results of an application it is not
immediately clear what the quality of the solution is. This leads
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to the need of assessing the credibility of CFD simulations by
Verification and Validation (V&V), [1–3].

One of the main features of V&V is the distinction between
numerical errors (Verification) and modelling errors (Validation)
[1, 2]. This is a fundamental issue to guarantee that a good so-
lution is obtained by the right reasons and not by a fortuitous
cancelling of errors. Verification is actually composed of two
different activities [1, 2]:

1. Code Verification aims at demonstrating that a given math-
ematical model is correctly implemented, by showing that
the numerical error tends to zero (with the correct order of
accuracy) with grid and time step refinement.

2. The goal of Solution Verification is to estimate an error bar
of a given numerical prediction that contains the (unknown)
exact solution with 95% confidence.

Both activities are exclusively mathematical, but one re-
quires error evaluation (Code Verification), whereas the other in-
volves error estimation (Solution Verification). Naturally, Code
Verification should come before Solution Verification. How-
ever, Code Verification has an end (unless the code is modified)
whereas Solution Verification is required for all applications of a
given code.

On the other hand, Validation is a science/engineering activ-
ity that intends to quantify the modelling error by comparison to
the “real world” (experiments). A proper validation requires the
knowledge of the experimental and numerical uncertainties [4].
Therefore, Validation must be preceded by Solution Verification.

Many fields of engineering have realized the importance of
V&V [4–8] and several Workshops have been organized in dif-
ferent fields to assess the quality of CFD predictions, as for ex-
ample the AIAA CFD Drag Prediction Workshops [9, 10], and
the three Workshops on CFD Uncertainty Analysis held in Lis-
bon in 2004, 2006 and 2008 [11–13].

A common feature of all these V&V events is that the con-
sistency between the results of different groups using supposedly
equivalent tools is not as good as would be desirable [14]. This
led to the introduction of a Code Verification exercise in the Lis-
bon Workshops [15], which proved to be extremely useful for the
assessment of the numerical properties of the RANS solvers that
participated [15, 16].

The same remark could be made from a literature review of
standard offshore applications, as for example the calculation of
the flow around a smooth cylinder [17]. Therefore, a Workshop
on V&V for offshore applications is proposed for the forthcom-
ing OMAE 2012 Conference. Three test-cases covering Code
Verification, Solution Verification and Validation are proposed
with the common feature of being unsteady, incompressible, pe-
riodic flows. Although more sophisticated models may be ap-
plied in 2 of the proposed cases, for this first V&V initiative in
offshore flows the main focus will be on URANS solvers. The
participants are asked to perform at least one test-case.

WORKSHOP SETUP
Code Verification

One of the challenges of Code Verification in URANS
solvers is the inexistence of analytical solutions. Although this
may suggest that it is impossible to perform Code Verification for
URANS solvers, the Method of Manufactured Solutions (MMS)
provides an excellent framework to do it [18]. The idea is simple:

- Define a computational domain.
- Define all the dependent variables of your model analyti-

cally, i.e. mean velocities and pressure and all turbulence
quantities included in the selected turbulence model.

- Substitute the manufactured flow quantities in the partial dif-
ferential equations and determine the residual/imbalance of
the partial differential equations.

- Add the outcome of the previous step to the differential
equations as a source term to remove the imbalance of the
arbitrary choice of the manufactured flow field.

- Solve the flow problem with your code and compare the re-
sults with the analytical solutions (manufactured).

Such procedure may be applied to any mathematical model
used in the calculation of turbulent flows. However, the complex-
ity of the procedure is naturally dependent on the formulation
chosen and in some cases it may be more difficult than it seems.
For example, in eddy-viscosity models there are some rules that
must be obeyed to avoid awkward behaviour of the turbulence
quantities [19]. Most RANS solvers take advantage of the fact
that production is positive and dissipation is negative in their dis-
cretization/linearization procedure. If the MS misses such prop-
erty it is likely that the flow solver will not converge without
modifications. However, from the practical point of view, the
changes required by this awkward behaviour are useless.

In the proposed Manufactured Solution (MS) the computa-
tional domain is a simple rectangular prism with a no-slip con-
dition applied at the bottom boundary and symmetry conditions
at the lateral boundaries (CASE-I). The flow mimics a pulsating
(periodic) flow separation region on top of a near-wall flow that
includes a laminar sub-layer and a wall shear-stress that matches
an empirical correlation of a flat plate boundary-layer.

The aim of this exercise is to demonstrate that the error of the
flow dependent variables vanishes when the grid size and time
step tend to zero and to establish the asymptotic order of conver-
gence of the method, which is supposed to match the theoretical
order of the discretization technique adopted.

Solution Verification and Validation
Two typical geometries of offshore applications have been

selected for the Solution Verification and Validation exercises: a
smooth circular cylinder (CASE-II) and a straked-riser (CASE-
III). Naturally, the selected Reynolds numbers lead to vortex
shedding and so the proposed flows are periodic. Although both
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exercises are proposed for the two geometries, the goals of each
test-case are different:

- The aim of CASE-II is mainly to check the consistency be-
tween the numerical solutions obtained with different but
formally equivalent approaches.

- CASE-III is a practical test-case where the Validation pro-
cedure proposed in [4] can be tested. This will require pre-
dictions and experiments with their respective uncertainties.
However, the experimental data will not be made public be-
fore the Conference.

Naturally, numerical solutions of these periodic flows will be
affected by round-off, iterative and discretization errors. How-
ever, the focus of this exercise is discretization errors and so it
is mandatory that round-off and iterative error contributions to
the numerical error are reduced to negligible levels when com-
pared to the discretization error. Furthermore, in order to enable
a reliable estimate of the numerical uncertainty, several different
calculations (grid sizes and time steps) are required per test-case.

Obviously, the proposed exercise requires a significant ef-
fort from the participants due to the large number of calculations
involved and to the strict checking of the iterative convergence
achieved. However, this type of exercise is essential for assess-
ment of the capabilities available and for the identification of the
challenges that are faced by mathematical modelling of complex
turbulent flows.

PROPOSED TEST-CASES
General Considerations

It must be emphasized that the goal of this Workshop
is to obtain numerical predictions with their respective er-
ror/uncertainties. Therefore, results are required for at least 3
different grids and 3 different time steps [20] with a minimum of
6 data points (of the possible 9). Furthermore, grid refinement
must be performed in all directions simultaneously [21] and ide-
ally the grids should be geometrically similar [22].

As mentioned above, numerical errors/uncertainties are not
exclusively dependent on discretization error [1, 2]. However,
round-off and iterative errors should be reducible to negligible
levels when compared to the discretization error. In complex tur-
bulent flows, this usually requires the use of 15 digits precision
and iterative convergence criteria that ensure an iterative error at
least two orders of magnitude smaller than the discretization er-
ror [23, 24]. It must be emphasized that iterative errors can be
one to two orders of magnitude larger than the normalized resid-
uals or differences between iterations of the last iteration per-
formed [23, 24]. Therefore, iterative convergence criteria must
be carefully selected to ensure that numerical uncertainties are
mainly due to discretization errors.

The three test-cases proposed for this exercise are periodic

flows. This means that we have two types of iterative conver-
gence criteria involved:

- Related to the number of periods that have to be calculated
to obtain a “numerically periodic” solution.

- Related to the convergence of the flow field at each time step.

Both criteria have to be checked to avoid misleading conclusions
about the real magnitude of iterative errors. Iterative convergence
criteria depend on the grid and time resolution (discretization er-
ror) and so it is impossible to establish “standard criteria” for all
calculations. However, it must be demonstrated that the adopted
criteria are sufficient to guarantee a negligible influence of itera-
tive errors to the numerical uncertainty.

CASE-I: 3D Manufactured solution of an unsteady tur-
bulent flow

Computational domain The computational domain is a
square prism with length 0.9Lre f , height 0.4Lre f and width Lre f .
An alternative domain may be used with half the width, 0.5Lre f .
Figure 1 illustrates the computational domain. The computa-
tional domain does not change with time t.

0.1Lre f ≤ x ≤ Lre f
0 ≤ y ≤ 0.4Lre f
0 ≤ z ≤ Lre f or 0≤ z≤ 0.5Lre f

FIGURE 1. Domain and boundary conditions for MMS test-case
(CASE-I).

Boundary conditions There is a lot of flexibility in the
specification of boundary conditions for a manufactured solution.
However, it is convenient to keep the exercise as close as possible
to a realistic application. Therefore, the following boundary con-
ditions must be applied in the calculation of this flow (see Figure
1):
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- Inlet boundary (x = 0.1Lre f ): prescribed velocity compo-
nents and turbulence quantities.

- Outlet boundary (x = Lre f ): prescribed pressure coefficient.
- Bottom boundary (y = 0): no-slip condition for velocity

components and zero normal pressure derivative (exactly
satisfied by the manufactured solution).

- Lateral boundaries (z = 0 and z = 0.5Lre f or z = Lre f ): sym-
metry conditions.

- Top boundary (y = 0.4Lre f ): conditions to be imposed are
left free to the participants.

Flow conditions The manufactured solution mimics a
periodic near-wall turbulent flow with a Reynolds number based
on the reference length, Lre f , and the reference velocity, Vre f , of
Re = 107. The Strouhal number, St, of the proposed solution is
equal to 1. The “wall” is the bottom boundary (y = 0) and at
y = 0.4Lre f the axial velocity component Vx tends to Vre f and the
transverse velocity component Vz goes to zero.

The proposed manufactured solution satisfies mass conser-
vation. Source functions to correct the imbalance caused by the
arbitrary choice of the manufactured solution are available for the
momentum equations and for the turbulence quantities transport
equations of the following eddy-viscosity models:

- One-equation model of Spalart & Allmaras [25].
- One-equation model of Menter [26].
-
√

kL one-equation model [27].
- Wilcox [28], TNT [29], BSL and SST k − ω [30] two-

equation models.
- k−

√
kL two-equation model [27].

Ideally, the exercise should be performed with all equations
active, i.e. the turbulence model should be also included. How-
ever, this requires the use of an extra source term in the turbu-
lence quantities transport equations, which is not available in
many codes. Therefore, a simplest alternative is to verify only
the mean flow equations, i.e. mass conservation and momentum
balance, using the manufactured eddy-viscosity as a prescribed
quantity.

There are also functions available with the exact solution of
all dependent variables of the problem:

- Mean axial velocity component, Vx(x,y,z, t).
- Mean vertical velocity component, Vy(x,y,z, t).
- Mean transverse velocity component, Vz(x,y,z, t).
- Mean pressure coefficient, Cp(x,y,z, t).
- Eddy-viscosity, νt(x,y,z, t).
- Dependent variable of the Spalart & Allmaras [25] and

Menter [26] one-equation models, ν̃(x,y,z, t).
-
√

kL ≡ Φ variable of the
√

kL and k−
√

kL one and two-
equation models [27], Φ(x,y,z, t).

- Turbulence kinetic energy, k(x,y,z, t).
- Turbulence frequency, ω(x,y,z, t).

All available functions use dimensionless variables with ref-
erence quantities obtained from ρ , Lre f and Vre f . The pressure
coefficient Cp includes the contribution of 2/3k.

Data to be supplied For all the dependent variables of
the flow, i.e. three mean velocity components, pressure coef-
ficient, and dependent variables of the turbulence model, at 5
different times, t j = 0.125T,0.25T,0.5T,0.75T,T :

- L∞ norm of the error.

L∞(φ)=max(φ(xi,yi,zi, t j)−φMS(xi,yi,zi, t j)) for 1≤ i≤Nvol .

- Root Mean Square (RMS) norm of the error.

RMS(φ) =

√√√√√√
Nvol

∑
i=1

(φ(xi,yi,zi, t j)−φMS(xi,yi,zi, t j))
2

Nvol
.

φ stands for any of the dependent variables of the problem, φMS is
the exact solution and Nvol is the number of cells of the grid. The
last flow quantity requested is the “friction resistance” coefficient
of the bottom boundary defined by

CF =

∫ xmax
xmin

∫ zmax
zmin

2ν

(
∂Vx
∂y

)
y=0

dxdz

V 2
re f (xmax− xmin)(zmax− zmin)

,

at the same time instants of the error norms.

CASE-II: Smooth fixed cylinder
Computational domain The classical stationary in uni-

form inflow smooth fixed circular cylinder is considered, see for
instance [31]. This is a canonical and benchmark test-case used
specially in the aerospace and offshore industry, for which blunt-
body flows are very common. The scattered results of experi-
ments and calculations for this problem (see for instance [17]) in-
dicate that this is one of the most difficult problems to solve with
the current CFD methods. It is nevertheless an easy geometry to
be meshed and therefore an appropriate test-case for a solution
verification exercise. Figure 2 shows the computational domain
to be used and associated dimensions relative to the diameter of
the cylinder. These are maybe not the optimal dimensions for a
comparison with some available experimental data, but we em-
phasize again that the objective of this exercise is Solution Ver-
ification and not Validation. Nevertheless, the blockage effects
for these dimensions are known to be small. The participants are
free to choose to perform the calculations in 2D or 3D mode, and
thus also to choose the width of the domain or cylinder length
L = xD.
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FIGURE 2. Domain and boundary conditions for cylinder test-case
(CASE-II).

Boundary conditions The following boundary condi-
tions must be applied in the calculation of this flow (see Figure
2):

- Inlet boundary: prescribed velocity components and turbu-
lence quantities.

- Outlet boundary: zero normal gradients for all quantities.
- Cylinder boundary: no-slip condition for velocity compo-

nents and zero normal pressure gradient.
- Lateral boundaries: symmetry or cyclic conditions.
- Bottom/Top boundaries: conditions to be imposed are left

free to the participants.

Flow conditions For flow conditions, 5 cylinder diam-
eter based Reynolds numbers ReD are to be computed: ReD =
1×103, ReD = 1×104, ReD = 1×105, ReD = 5×105 and ReD =
1× 106, see Figure 3. This is the maximum number of condi-
tions, and the participants have to perform at least ReD = 1×105

and ReD = 5×105 conditions, close to the drag-crisis regime. All
calculations should be unsteady and consider turbulence models,
and as stated above, can be either 2D or 3D calculations.

Data to be supplied Since we are dealing with a So-
lution Verification exercise mainly integral quantities or local
quantities are considered. These are:

- Maximum, average and amplitude of drag coefficient, CDmax ,
CDavg , CDrms , ∆CD.

- Maximum, average and amplitude of lift coefficient, CLmax ,
CLavg , CLrms , ∆CL.

FIGURE 3. Experimental CDavg vs ReD curve together with proposed
workshop conditions (CASE-II). From [17] and [32].

- Maximum, average and amplitude of base pressure coeffi-
cient Cpb , being the pressure coefficient at the θ = 0◦ loca-
tion downstream of the cylinder.

- Strouhal number St based on Tre f corresponding to
the vortex-shedding frequency calculated from the lift-
coefficient first harmonic.

- Maximum, average and amplitude of separation point θsep
(in 2D) or of separation vector components θsepz (in 3D).

CASE-III: 3D straked-riser
Computational Settings Figure 4 illustrates the geom-

etry of the straked riser chosen for this Solution Verification and
Validation exercise. This geometry has been tested in MARIN’s
high-speed basin (HT) in 2001, and the available experimental
data are currently being made public [33].

The geometry will be made available to the participants
by means of a IGES file, but the experimental data not. The
test campaign was done by towing the submersed riser in the
HT basin. The associated diameter-based Reynolds number is
ReD = 5.09×105. No waves have been observed during the ex-
periments. Figure 5 shows the proposed computational domain
which takes into account the distance of the riser to the free-
surface and to the bottom of the basin. The domain is shortened
in the axial direction in order to save computational resources
(mesh resolution). The axial length of the domain is nevertheless
enough not to influence the numerical results significantly. The
diameter of the riser without strakes is D = 0.2m, and the length
L = 3.523m.
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FIGURE 4. Riser geometry (CASE-III). From [33].

FIGURE 5. Domain and boundary conditions for riser test-case
(CASE-III).

Boundary conditions The following boundary condi-
tions should be applied in the calculation of this flow:

- Inlet boundary: prescribed velocity components and turbu-
lence quantities.

- Outlet boundary: zero normal gradients for all quantities.
- Riser boundary: no-slip condition for velocity components

and zero normal pressure gradient.
- Lateral boundaries: symmetry or cyclic conditions.
- Bottom boundary: fixed-slip condition for velocity with

Vx =Vre f and zero normal pressure gradient.
- Top boundary: conditions to be imposed are left free to the

participants.

Data to be supplied For the the Solution Verification
and Validation exercise the following quantities are asked:

- Maximum, average and amplitude of drag coefficient, CDmax ,
CDavg , ∆CD.

- Maximum, average and amplitude of lift coefficient, CLmax ,
CLavg , ∆CL.

- Strouhal number St based on Tre f corresponding to
the vortex-shedding frequency calculated from the lift-
coefficient first harmonic.

- CL and CD time history for relevant time-steps/cycles.

GENERAL CONDITIONS AND DEADLINES
The contributions to these exercises are composed of two

parts:

1. A paper for a special V&V Workshop OMAE2012 session
including results for at least one of the proposed test-cases.
If all cases here proposed would be done, the results could
be presented in more than one paper.

2. A reply to a questionnaire provided by the organizers and
data sheets including the requested flow quantities for at
least 6 different calculations using at least 3 grids and 3 time
steps.

The paper will provide information about the calculations, and
solution techniques used, whereas the questionnaire and data
sheets will facilitate the comparison of the results of all partici-
pants. Naturally, solutions provided in a single grid with a single
time step are useless for the present exercise. The papers should
be submitted in the standard framework of the OMAE2012 Con-
ference. However, data sheets and the questionnaire for the com-
parisons to be presented at the Workshop can be delivered to the
organizers until the end of April 2012.

FINAL REMARKS
The proposed Workshop is a starting point to improve the

knowledge of the capabilities and limitations of “standard” CFD
tools in offshore applications. Although we are addressing es-
sentially URANS solvers, the numerical problems are common
to more sophisticated mathematical models of turbulent flows,
where the consequences of the numerical noise may be even less
understood and worst than in URANS simulations.

Although the proposed geometries and flow conditions can
be classified as “simple test-cases”, the requirements for a re-
liable estimation of the numerical uncertainty make any of the
proposed test-cases more time consuming than what can be fore-
seen from “practical calculations”. However, separating numer-
ical and modelling errors is essential for the credibility of CFD
and for the improvement of the simulation tools.
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The solution of a given mathematical model for a given
problem is independent of the numerical technique (discretiza-
tion schemes) selected. Therefore, what we would like to see
at the OMAE2012 conference is consistency (overlap of error
bars) between the solutions of different groups calculating the
same flow with equivalent mathematical models, even if the so-
lution shows discrepancies to the experimental data. The goal of
the exercise is not to find “the numerical settings” that make the
simulation match a known experiment.

A final encouragement to the potential participants: what-
ever the outcome of the exercises, you will learn a lot about the
behaviour, the reliability, and the quality of your computational
tool.
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