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ABSTRACT 

 
Numerical uncertainty analysis has been performed for the turbulent flow past a backward facing step. 

The analysis is based on calculations on seven non-rectangular, but structured, grid sets that were provided 
by the organizers of the 2004 Lisbon Workshop. The calculations were performed by using a commercial 
code, namely, FLUENT with the Spalart-Allmaras’ one-equation turbulence model. Since there was no 
experimental data made available, the present study constitutes simply a calculation verification process 
where by a set of partial differential equations are solved on gradually refined grid sets, and then the overall 
numerical uncertainty in selected quantities is estimated by various methods.   

Some new ideas are presented for estimating the coefficient of variation, which is related to standard 
deviation (or standard error of estimate in case of least squares method). 

The major problem that stands out again is the case of oscillatory convergence. For such case some 
alternative methods are proposed, and the results are assessed by comparing different methods with each 
other. Another issue that can not be ignored is the problem of interpolation to obtain the values of a selected 
parameter at a given spatial location from the results of calculations on different grids. The interpolation 
error could sometime overshadow the discretization error, and the remedy to this problem is not trivial. 

 
BACKGROUND 
 

The numerical uncertainty assessment is necessary for CFD (Computational Fluid Dynamics) to 
become a reliable design tool. Many of the approaches proposed in the literature for quantification of the 
numerical uncertainty are based on grid refinement in conjunction with Richardson extrapolation (RE) 
(Richardson 1910, 1927; Roache, 1998).  

RE usually uses calculations on 3 sets of grids to determine the extrapolated value of a dependent 
variable to zero grid size, either using the theoretical order of the scheme (on at least two grid levels), or via 
the apparent or observed order which is calculated as part of the unknowns; in the latter case at least three 
sets of calculations are needed on significantly different grid levels. The pros and cons of this method has 
been the topic of many recent publications (Celik et al.  (1993), Celik & Zhang (1993), Celik & Karatekin 
(1997), Roache (1998), Stern et al. (2001), Cadafalch et al. (2002), Eca & Hoekstra (2002)). In spite of 
being a very useful tool for quantifying discretization errors in CFD, there still remain major problems that 
need to be addressed to advance the level of confidence that could be trusted upon this method (Eca & 
Hoekstra 2003, Celik et al., 2004).  

Alternative methods are proposed due to the difficulties of Richardson extrapolation. For instance, 
least squares approach is proposed to avoid the scattering of the data although it needs more than 3 sets of 
grids. AES (Approximate Error Spline) method (Celik et al. 2004) is proposed to solve the oscillatory 
convergence problems.  

The organizers of the Lisbon workshop (Eca et al., 2004) have recognized the need for further 
refinement and assessment of the methods used for quantifying numerical uncertainty. This paper presents 
our findings from a careful study of numerical uncertainty for one of the test cases proposed by Eca et al. 
(2004). This is the classical case of a turbulent flow over a backward facing step. Our study will address on 
the following questions: (1) what is the effect of interpolation methods on the extrapolation?  (2) Which 
extrapolation method is suitable for oscillatory convergence? (3) Which uncertainty estimation method is a 
better indicator for grid convergence? (4) How can the error estimates calculated from extrapolated values 
be translated into a quantitative uncertainty? 
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METHODS 
 

With more than 3 sets of grids, we can use least squares method for extrapolation of computed 
quantities (Eca and Hoekstra, 2003). With 3 sets of grids, the following methods -- power law method, 
cubic spline method, polynomial, and Approximate Error Spline (AES) method are used in this study (See 
the appendix for the details of these methods; see also Celik et al., 2004 for more details).  We use non-
linear least squares extrapolation (see appendix A) with 4 and 7 sets of grids. In these cases the mean, µ, is 
simply taken as the extrapolated value, extφ . Once extφ is known the numerical uncertainty is calculated 
using the fine Grid Convergence Index (GCI) proposed by Roache (1998) which can be written as  
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An alternative way to estimate the uncertainty is to calculate the coefficient of variation. In this study, 
the coefficient of variation (CV) for the least squares method are computed from  
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Here, extµ φ= and extφ is equivalent to 0φ in the appendix. rσ  is the sum of squares of the errors 

between the nonlinear regression line and the data points. / hφσ is the standard error of the fit. The 
coefficient of variation is the relative error of estimate. 

For these methods requiring 3 sets of grids, the coefficient of variation is calculated from the sampling 
results with 4 triplets; Four sets of grids are denoted by G1, G2,G3, &G4, the sample size n=4, and the 
triplets are (G1,G2,G3); (G1,G3,G4); (G1,G2,G4) & (G2,G3,G4). Using these samples the mean µ is given 
by 
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and the standard deviation is given by  
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The coefficient of variation is computed from 

CV σ
µ
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Combining different methods of extrapolation, larger samples can be obtained to improve the statistics. 
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CASES AND SPECIFIC ISSUES 
 

The case investigated in this study is a 2D turbulent backward facing step flow. The Reynolds number 
is 50,000 based on the step height and the maximum inlet velocity. The Expansion ration is 9/8. An 
example of seven sets of similar, structured, and non-Cartesian grids used in this study is shown in Figure 
1. These grids are refined from 101*101 to 241*241. The averaged grid size is calculated from 

/ ch A n= where A is the area of the domain and nc is the number of the cells. The grid refinement ratios 
for all these grids are in the range of 1.1~1.2 as listed in the first two columns of Table 1. These grids are 
used to estimate the numerical uncertainty with the least squares method. In this study we also selected 
some triplets to assess those extrapolation methods which are applicable for three sets of grids. For these 
triplets, the refinement ratios are in the range of 1.29~ 1.43 which is generally believed to be more 
appropriate in grid convergence study with three sets of grids.  Four sets of grids listed in the last two 
columns of table 1 are also used to estimate the uncertainty with the least squares method and the results 
are compared to the ones that involved all seven sets of grids.  

 

 
Figure 1 an example of grids used in this study 

 
Table 1  Grid refinement ratios 

grids ratio   grids Ratio   Grids Ratio   grids ratio 
101*101     101*101     141*141     101*101   
121*121 1.20   141*141 1.40   181*181 1.29   141*141 1.40 
141*141 1.17   201*201 1.43   241*241 1.33   181*181 1.29 
161*161 1.14               241*241 1.33 
181*181 1.13                   
201*201 1.11                   
241*241 1.20                   

 
Sparlart-Allmaras’ one-equation turbulence model is used to solve for the flow field with the 

commercial code FLUENT 6.0 (FLUENT CO. 2004). The convection terms and the diffusion terms are 
discretized with the second order upwinding scheme and the central differencing scheme, respectively. The 
inlet velocity is provided by Eca (2004). At the outlet, the gauge pressure and the derivatives of other 
quantities are set to be zero. The non-slip wall boundary condition is used at the walls. The shear stress at 
walls is obtained from laminar stress-strain relationship / /u u u yτ τρ µ= .  

For post-processing of the data, the bilinear interpolation method based on the quantities at four nodes 
of a cell is used with an order of accuracy in the range 1<p<2. Interpolation methods with higher order are 
possible but they need also the quantities from neighboring cells. As a comparison, the results with 
quadratic interpolation method are also calculated to access the impact of interpolation errors. The 
quadratic interpolation method needs 6 nodes, two of which are from the neighboring cells. In this study, 
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for a cell with four nodes -- (xi,  yi), (xi,  yi+1), (xi+1,  yi), and (xi+1,  yi+1), we add two neighboring nodes (xi,  
yi+2) and (xi+2,  yi) to build a linear system to solve the interpolation coefficients. It is worth to note here that 
selecting other nodes may result in a singular linear system of equations. For instance, choosing (xi, yi+2) 
and (xi+1, yi+2) will lead to singularity. Figure 2 shows us the streamwise velocities interpolated with the 
bilinear and quadratic interpolation methods along a vertical line at x/H=3.0 (H is the step height). The 
difference is not negligible especially in the recirculation region. Since the node choice for the quadratic 
interpolation method is not unique, we use the bilinear interpolation method for the calculations presented 
later to preserve the consistency. To study the influence of interpolation method further, 4 sets of 
rectangular grids are generated by doubling the grids. The results with these grids did not need any 
interpolation. 

 

 
Figure 2 Interpolated streamwise velocity at x=3.0 with 101*101 grids 

 
Double precision is used for all the calculations in this study. The machine accuracy for double 

precision is approximately 2.22E-16 so that the round-off error is expected to be negligible. The iterations 
were stopped whenever the scaled residual for continuity equation approached an asymptotic value. The 
scaled residual is defined as 
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Here ap is the center coefficient of the discretization equation, anb are the influence coefficients for the 
neighboring cells, and b is the contribution of the source term. Correspondingly, φp is the value for a 
general variable at the center cell and φnb represent the one at the center of the neighboring cell. In this 
study, the scaled residual is observed to reach a constant of about 1e-12~ 1e-15, which varies with the 
grids.  

 
RESULTS AND DISCUSSION 
 
(1) Grid convergence  

 

First the convergence patterns are shown (Figure 3) with grid refinement for the calculated velocity at 
the points -- (0,1.1) and (4, 0.1). Two types of grid convergence are identified namely – monotonic and 
oscillatory. It is also seen that the results are far from being grid independent. These figures illustrate that in 
the assumption of being in the asymptotic range is still a problem even with seven set of grids. 
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(a) ‘apparent’ monotonic convergence   (b) oscillatory convergence 
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(c) oscillatory convergence  (d) ‘apparent’ monotonic convergence 

Figure 3 Velocities at (0, 1.1) and (4, 0.1) calculated with different grids (h0 is the grid length of the 
coarsest grid) 

 
(2) Least squares extrapolation 

 
The results in Table 2&3 are calculated with least squares method using all 7 sets of grids. Uncertainty 

is estimated by using the Grid Convergence Index from Eq. (1). 

 
Table 2 local flow quantities extrapolated with 7 sets of grids 

Variable x=0, y=1.1h x=h, y=0.1h x=4h, y=0.1h 
U 6.619E-01 -1.952E-01 -1.442E-01
Uncertainty U 1.7E-03 1.51E-03 2.2E-02
Observed p 1.92 3.00 3.40
V 2.208E-02 1.426E-02 -9.289E-03
Uncertainty V 1.5E-01 7.15E-02 3.1E-02
Observed  p 3.23 2.83 3.06
Cp -1.727E-01 -2.421E-01 -1.164E-01
Uncertainty Cp 1.1E-01 2.26E-03 9.7E-03
Observed  p 1.19 2.95 1.33
νt 1.439E-03 1.192E-03 2.177E-03
Uncertainty νt 3.9E-04 3.31E-03 4.3E-03
Observed  p 3.07 3.06 3.07
 
Reattachment  point:  6.203 Uncertainty:  4.6E-2  Observed p:  0.86 
 

Table 3 Integral quantities extrapolated with 7 sets of grids 
 

Flow quantity Predicted Uncertainty Observed  p 
Friction resistance bottom wall(N) 2.640E-02 2.1E-03 3.07 
Friction resistance top wall(N) 4.882E-02 2.0E-04 3.06 
Pressure resistance bottom wall(N) 1.115E-01 5.6E-03 2.98 
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The results in Table 4&5 are calculated using least squares method with 4 sets of grids—101x101, 
141x141, 181x181, 241x241. This is done because of two reasons: 1) Calculations with seven sets of grids 
are too many and unrealistic; 2) the grid refinement ratio with the set of seven is too small. Here also, 
uncertainty is estimated by using the Grid Convergence Index. 

Table 4 local flow quantities extrapolated with 4 sets of grids 
 
Variable x=0,y=1.1h x=h,y=0.1h x=4h,y=0.1h 
U 6.629E-01 -1.953E-01 -1.439E-01
Uncertainty U 3.5E-03 4.6E-04 1.9E-02
Observed p 1.96 3.14 3.37
V 2.176E-02 1.435E-02 -9.316E-03
Uncertainty V 1.3E-01 6.3E-02 2.7E-02
Observed  p 3.21 3.05 3.17
Cp -1.654E-01 -2.421E-01 -1.196E-01
Uncertainty Cp 5.0E-02 2.3E-03 2.4E-02
Observed  p 1.60 3.11 2.59
νt 1.440E-03 1.193E-03 2.177E-03
Uncertainty νt 1.2E-03 2.2E-03 4.1E-03
Observed  p 3.18 3.18 3.18
 
Reattachment point:  6.215    Uncertainty:  4.4E-2  Observed p:  0.89 
 

Table 5 Integral quantities extrapolated with 4 sets of grids 
Flow quantity Predicted Uncertainty Observed  p 
Friction resistance bottom wall(N) 2.641E-02 2.0E-03 3.18 
Friction resistance top wall(N) 4.883E-02 1.6E-04 3.18 
Pressure resistance bottom wall(N) 1.115E-01 5.1E-03 3.12 
 

The extrapolated quantities and the uncertainties predicted with 4 sets of grids are very close to the 
ones predicted with 7 sets of grids. Since 4 sets of grids are the minimum which least squares approach 
requires. This seems to be adequate for uncertainty analysis. Of the uncertainties at three different location 
(0, 1), (1, 0.1), and (4, 0.1), the ones at (1, 0.1) are the largest which may be caused by the rapidly changing 
of the flow field in that region. The observed p scatters in the range of 0.86 ~ 3.40 and it is difficult to 
identify the theoretical order of accuracy directly from these results. Positive observation is that the least 
squares method does not lead to unrealistically low (i.e. 0.1) or high (i.e. 10) observed order of accuracy.   

 
(3) Extrapolation with methods using triplets 

 

The quantities extrapolated with power law, AES, cubic spline, and polynomial method (See appendix 
for explanation on these methods) are compared to those calculated with least squares method as shown in 
Table 6. When oscillatory convergence happens, the extrapolated values predicted with the AES method are 
closest to the results with the least squares method.  The GCI and the CV are compared in Table 7. It is seen 
that the CV predicted with the least squares method is much smaller than the ones calculated using the 
other methods with only 3 sets of grids. The GCI and CV normalized by the maximum in each row of Table 
7 are then plotted in Figure 4. With the least squares method, the uncertainty calculated with the CV shows 
more consistence than the one with the GCI. Among these methods with triplets, the uncertainty associated 
with the power law seems to be much larger than the others. It remains to be seen which of these represent 
the unknown ‘reality’.  
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Table 6 Extrapolated quantities with different method 

    

Least 
squares(7 
grids) 

Least 
squares(4 
grids) Power Law AES 

Cubic 
spline Polynomial

  U 6.619E-01 6.629E-01 6.883E-01 6.586E-01 6.771E-01 6.837E-01
x=0 V 2.208E-02 2.176E-02 1.231E-02 2.040E-02 1.533E-02 3.777E-03
y=1.1 Cp -1.727E-01 -1.654E-01 -2.047E-01 -1.515E-01 -1.857E-01 -1.982E-01
  νt 1.439E-03 1.440E-03 1.419E-03 1.439E-03 1.428E-03 1.420E-03
  U -1.952E-01 -1.953E-01 -1.758E-01 -1.965E-01 -1.840E-01 -1.915E-01
x=1 V 1.426E-02 1.435E-02 2.301E-02 1.453E-02 1.977E-02 2.231E-02
y=0.1 Cp -2.421E-01 -2.421E-01 -2.273E-01 -2.426E-01 -2.333E-01 -2.352E-01
  νt 1.192E-03 1.193E-03 1.065E-03 1.203E-03 1.119E-03 1.174E-03
  U -1.442E-01 -1.439E-01 -1.379E-01 -1.424E-01 -1.393E-01 -1.265E-01
x=4 V -9.289E-03 -9.316E-03 -1.193E-02 -9.345E-03 -1.094E-02 -1.165E-02
y=0.1 Cp -1.164E-01 -1.196E-01 -1.001E-01 -1.187E-01 -1.071E-01 -9.552E-02
  νt 2.177E-03 2.177E-03 2.320E-03 2.176E-03 2.263E-03 2.275E-03
  f(South) 2.640E-02 2.641E-02 2.750E-02 2.638E-02 2.706E-02 2.704E-02
  p(south) 1.115E-01 1.115E-01 9.967E-02 1.118E-01 1.044E-01 1.048E-01
  f(north) 4.882E-02 4.883E-02 4.865E-02 4.884E-02 4.873E-02 4.883E-02
  reattachment 6.203E+00 6.215E+00 5.992E+00 6.476E+00 6.177E+00 6.054E+00
  separation 8.988E-01 8.936E-01 1.039E+00 8.018E-01 9.470E-01 9.869E-01

 Oscillatory convergence happens when refining the grids 
 

Table 7 GCI and Coefficient of variation in quantities found by extrapolation in Table 6 

    Least square 
Power 

law AES
Cubic 
spline Polynomial

    
GCI 
(7grids) 

GCI (4 
grids) 

CV (7 
grids) 

CV (4 
grids) CV CV CV CV

  u 1.7E-03 3.5E-03 2.7E-03 4.8E-03 2.6E-02 1.2E-02 4.3E-03 1.0E-02
x=0 v 1.5E-01 1.3E-01 7.9E-02 1.3E-01 4.2E-01 7.5E-02 5.6E-01 1.4E+00
y=1.1 cp 1.1E-01 5.0E-02 2.6E-02 3.9E-02 1.5E-01 9.8E-02 5.6E-02 5.5E-02
  vis 3.9E-04 1.2E-03 5.1E-03 5.0E-03 2.1E-02 1.2E-02 3.4E-02 4.8E-02
  u 1.5E-03 4.6E-04 5.2E-03 8.9E-03 8.0E-02 4.2E-02 2.1E-02 5.7E-02
x=1 v 7.1E-02 6.3E-02 5.8E-02 1.0E-01 2.2E-01 1.5E-01 5.8E-02 7.9E-02
y=0.1 cp 2.3E-03 2.3E-03 4.1E-03 7.2E-03 4.3E-02 2.1E-02 5.4E-03 2.6E-02
  vis 3.3E-03 2.2E-03 5.3E-03 8.9E-03 8.6E-02 4.4E-02 3.1E-02 6.4E-02
  u 2.2E-02 1.9E-02 9.1E-03 1.6E-02 4.4E-02 1.3E-02 4.2E-02 5.3E-02
x=4 v 3.1E-02 2.7E-02 2.8E-02 4.7E-02 1.3E-01 7.5E-02 3.3E-02 4.3E-02
y=0.1 cp 9.7E-03 2.4E-02 1.6E-02 3.1E-02 1.2E-01 3.2E-02 5.2E-02 3.2E-02
  vis 4.3E-03 4.1E-03 5.8E-03 9.9E-03 4.0E-02 2.3E-02 1.1E-02 2.2E-02
  f(South) 2.1E-03 2.0E-03 3.2E-03 5.5E-03 2.6E-02 1.4E-02 3.4E-04 1.4E-02
  p(south) 5.6E-03 5.1E-03 7.8E-03 1.4E-02 7.6E-02 3.6E-02 2.0E-03 4.0E-02
  f(north) 2.0E-04 1.6E-04 1.5E-04 2.1E-04 2.5E-03 1.4E-03 1.9E-03 2.8E-03
  reattachment 4.6E-02 4.4E-02 2.6E-03 4.6E-03 4.9E-02 2.1E-02 1.0E-02 1.6E-02
  separation 1.3E-01 1.2E-01 7.9E-03 1.4E-02 1.4E-01 8.6E-02 2.1E-02 5.9E-02

 
 Oscillatory convergence happens when refining the grids 
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Figure 4 Normalized GCI and CV with different methods and different cases 

When presenting results from a CFD application it is usually desirable to present calculated field 
variables with error bars in terms of profiles at certain locations in parallel with experimental results. Figure 
5 and 6 depicts the normalized error in the streamwise velocity component at x/H =1 as a function of 
vertical distance y/H. It is seen that extrapolation using power law is problematic, especially in the region 
where oscillatory convergence is present. When an average value is used for the observed order i.e. 

1

N

ave k
k

p p
=

=∑ , N being the number of data points, the results obtained from power law are in concert with 

the other methods (see Fig. 6) where the calculation of p is not an issue. We suspect that the ‘truth’ is 
somewhere among the four cases shown in Fig. 6. But it remains to be seen which one of these results in 
Fig. 5 represents the ‘truth’.  

 

 

 
Figure 5 Extrapolated streamwise velocity profile using power law with different ways handling the 

power p 

ave (p)
=0.71 

ave (|p|) 
=1.98 
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Figure 6 Comparison of the extrapolated streamwise velocity profile at x/H=1 with different methods 

 
(4) Results with no interpolation 

 
The separation and reattachment lengths calculated with doubling rectangular grids are shown in Table 

8.This grid doubling is done to avoid interpolation. Again, the oscillatory convergence is observed for the 
reattachment length calculated with rectangular grids. The extrapolated quantities and coefficients of 
variation are listed in Table 9. Among the coefficients of variation for all methods, the ones with the least 
squares method exhibit the smallest variation.  

Comparison of Table 7 and Table 9 show that the extrapolated reattachment length is in general 
significantly smaller (by about 7%) when the rectangular grids are used with grid doubling. On the other 
hand, the uncertainty indicated by coefficient of variation is larger when interpolation errors are minimized.  

The streamwise velocity component at (1.01, 0.125) with different grids are shown in Table 10. The 
velocities calculated with the rectangular grids and with no interpolation are shown on the left two 
columns. On the right, the velocities are computed with the non-rectangular grids and with the bilinear 
interpolation method.  The extrapolations are performed by using least squares method as shown in Table 
11. It is seen first that the extrapolated velocity with rectangular grids are somewhat different from the ones 
with non-rectangular grid. It is also observed that the numerical uncertainty (GCI and CV) calculated with 
the rectangular grids are quite smaller than the ones with the non-rectangular grids. The apparent order of 
accuracy, p, with rectangular grids is closer to the theoretical order used in this study. 

 

CONCLUSIONS 
  
This extensive effort on analysis of grid convergence and the estimation of numerical uncertainty has 

shown that when calculations are repeated on significantly different set of four grids, the least squares 
method gave results that seem to be at least consistent among themselves. We obtained very similar results 
using 7 sets of grids and 4 sets of grids, hence four sets of carefully selected grids should be adequate for 
uncertainty analysis. The major problem again, seems to arise from cases that exhibit oscillatory 
convergence. In fact, it may be erroneous to assume monotonic convergence just by observing the behavior 
of three or four points. In this regards, it may be necessary to devise methods which perform well both for 
monotonic, and oscillatory cases. Some of methods are proposed in this category has shown potential to 
predict the extrapolated values and the variance in that without specifically employing the observed order.  
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In particular, the approximate error spline method when used with triplets among four sets of grids may be 
a good choice to estimate the mean extrapolated values and the variance in that mean. 

 It remains to be seen if these conclusions will hold even after the conference when all results from 
different groups are compared with each other. 

 
Table 8 Quantities calculated with Cartesian grids and non-interpolation 

 61*61 121*121 241*241 481*481 

Separation point 0.0605 0.3143 0.7174 0.8026 

Reattachment point 5.5277 5.7498 5.6752 5.8353 
 

Table 9 Extrapolated quantities and coefficients of variation 
(Values in Parenthesis are from Table 6 & 7) 

  Separation point Reattachment point 
  Mean CV Mean CV 

Least squares 
1.19

(0.89)
6.7E-02

(1.4E-02)
5.77

(6.22)
1.4E-02

(4.6E-03)
Power law 1.39 3.2E-01 5.82 8.9E-02
AES 0.73 1.3E-01 5.75 1.8E-02
Cubic spline 1.00 1.5E-01 5.80 5.0E-02
Polynomial 1.06 2.7E-01 5.80 8.4E-02

 
Table 10 Streamwise velocity at (1.01, 0.125) calculated with different grids 

Rectangular 
grids 

velocity with no 
interpolation 

non-rectangular 
grids 

velocity with 
interpolation 

61*61 -2.0340E-01101*101 -2.0360E-01 
121*121 -1.9132E-01121*121 -1.9647E-01 
241*241 -1.8979E-01141*141 -1.9210E-01 
481*481 -1.8865E-01161*161 -1.8916E-01 
    181*181 -1.8724E-01 
    201*201 -1.8593E-01 
    241*241 -1.8433E-01 

 
Table 11 Extrapolated streamwise velocity at (1.01, 0.125) with least squares method 

  non-rectangular rectangular 
  7 sets of grids 4 sets of grids 4 sets of grids
U -0.1840 -0.1842 -0.1887 
GCI  2.0E-03 1.0E-03 2.0E-04 
p 3.004 3.146 2.272 
CV 5.0E-03 8.6E-03 3.4E-03 
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APPENDIX 
 
(1) Least squares method 

With the least squares approach, we compute 0φ ,α , and p by minimizing the following function. 

( ) 2
0 0

1
, , ( )

n
p

i i
i

S p hφ α φ φ α
=

= − −∑    (1.1) 

where n is the number of grids available. The minimum of (1.1) is found by setting the derivatives of (1.1) 
with respect to 0φ ,α , and p equal to zero, which leads to a non-linear system of equations. Solving the 

non-linear system yields values for 0φ ,α , and p. 
 

(2) Polynomial method 
This method uses the first few terms in the Taylor expansion of  ( )hφ  to approximate ( )hφ . For 

instance, assuming the method is first-order, we can use the first three terms if we have 3 sets of grids. That 
is 

2
21)0()( hahah ++=φφ     (2.1) 

If we have 4 sets of grids, we can use 
3

3
2

21)0()( hahahah +++=φφ    (2.2) 

If the scheme is higher order (p≥2), this method will mean essentially a curve fit to the actual error 
function. For a fourth order method one has to keep at least 4 terms, i.e. five sets of calculations are needed.  
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The extrapolation to the limit approach is recommended to solve the equations formed by polynomial 
method. This approach uses the following formula to calculate the extrapolated solution )()3( hφ  for 3sets 

of grids and )()4( hφ  for 4 sets of grids. 

m

mmm
m hhh

α
φααφφ

−
−=

−−

1
)()()(

)1()1(
)(   m=1, 2, ⋅⋅⋅ (2.3) 

It’s easy to tabulate the sequential steps of the calculation procedure and to add more points later. 
 

(3) Power law method 
We use the Power law method proposed by Celik and Karatekin(1997) for 3 sets of grids. The idea 

follows  
pchh 11)()0( =−φφ      (3.1) 

pchsignh 2
21

32
2 )()0( 








=−

ε
εφφ     (3.2) 

pchh 33)()0( =−φφ      (3.3) 

where ))()(/())()((/ 12233232 hhhh φφφφεε −−=  the sign of which is positive for monotonic 

convergence and negative for oscillatory convergence. There are 3 unknows, )0(φ , c, and p. We can 
implement the same iterative method to solve (3.1)-(3.3) as done by Celik and Karatekin (1997).  

For 4 sets of grids, we can apply 

4,3,2,1)0()( 1
21 =+=− + ihahah p

i
p

ii φφ    (3.4) 

Oscillatory convergence is facilitated if a1 and a2 are of opposite sign. It should be noted that for some 
cases there is no solution to Eq. (3.4). Those cases will be counted as unsuccessful outcomes. 
 

(4) Cubic spline method 
The well known natural cubic splines curve fitting technique is used to create the cubic splines 

between three points or four points. )0(φ  can be found by extrapolating the curve for the interval closest to 
h=0.  
 

(5) Approximate error spline method 
Still using Taylor series expansion for )(hφ  and substituting hα for h , we have 

�++++= 3
3

2
21 )()()0()( hahahah αααφαφ    (5.1) 

The true error Et is given by 

∑
∞

=

=−≡
1

)0()(),(
k

kk
kt hahhE αφαφα    (5.1) 

and the approximate error Ea 

)()(),( hhhEa φαφα −≡     (5.2) 

where ),( hEt α  is the true error and ),( hEa α  is the approximate error which presents the difference of 
the subsequent results with the fine grid and the coarse grid. So we have 
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∑
∞

=

−=
1

)1(),(
k

kk
ka hahE αα     (5.3) 

Dividing (5.1) by (5.3) and moving ),( hEa α  to the right hand side yield 

),(
1

1),( hE

ha
ha

hE a

kk
k

k
k

t α

α

α

∑
∑−

=    (5.4) 

letting 

2
210 hbhbb

ha
ha

kk
k

k
k ++=

∑
∑

α
    (5.5) 

and expanding the l.h.s. of the above equation and comparing it with the r.h.s. give 

2

1

2

1

3
2

2

1

2
10

)1(1

11









−−







 −=








 −==

a
a

a
ab

a
abb

α
α
α

α
α

α
 (5.6) 

Now Eq. (5.4) can be rewritten as 

),(
)(1

1),( 2
210

hE
hbhbb

hE at αα
++−

=     (5.7) 

In order to calculate 210 &, bbb , we need to calculate 321 ,&, aaa  first. It is seen from Eq. (5.3) that  

3,2,1
)1(!
)0,()(

=
−

= k
k
Ea k

k
a

k α
α

    (5.8) 

E(k) is the kth derivative of E. Assuming that we have 3 sets of grids and the solutions as ( ))(, 11 hh φ , 

( ))(, 22 hh φ  and ( ))(, 33 hh φ  with 1
2

23 hhh αα == . And noting that 0)0,( ≡αaE leads to 3 points as 

( )),(, 11 hEh a α , ( )),(, 22 hEh a α  and ( ))0,(,0 αaE  which involves the approximate error instead of the 

numerical solution φ~ itself. Using the information on Ea we can interpolate with cubic splines using two 

endslopes given by 0)0,(' ≅αaE  and )/()),(),((),(' 21211 hhhEhEhE aaa −−≅ ααα . These 
endslopes are acceptable at h=0 for any scheme with order larger than 1. For the first order methods, in 
general, the slope at h=0 is not zero. We could still obtain excellent results using the zero slope assumption 
for the first order methods as we demonstrate in the assessment part of this paper. Once we 

have )0,()( αk
aE , we can calculate ka  from Eq (5.8). As one might notice, 1b is singular at h=0 if 

0)0,(' =αaE . In order to avoid this singularity, ),(' εαaE can be used to represent )0,(' αaE  by using 

finite differencing at ε=h  where ε  is a small value. Having obtained 0b , 1b  and 2b , we can calculate 

)0(φ  from Eq. (5.7) together with the definition (5.1) and (5.2). 
 


