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ABSTRACT 
The assessment of numerical uncertainty in CFD (Computational Fluid Dynamics) relies on 

the estimation of the true discretization error which is defined as the difference between the exact 
(commonly unknown) solution to the partial differential equation and the numerical solution 
obtained from a discretized equation on a certain grid. To determine the extrapolated exact 
solution to zero-grid cell size, Richardson extrapolation method is commonly used but this 
method has limited success and requires calculations on at least three and sometimes up to 5 or 6 
grids. Even then questions related to non-monotonic convergence or divergence, the anomalies 
concerning the observed (or apparent) order of the computations can not be resolved. The 
technique proposed in this study attempts to avoid much of the difficulties of Richardson 
extrapolation and is based on the refinement of ideas presented by Celik and Li [1] concerning 
the relation between the approximate error and the true error. The proposed method is verified 
using manufactured solutions for a steady state, incompressible, 2-D turbulent flow emulating a 
boundary layer type flow. Then, it is applied to the case of flow over a backward facing space 
(Ercoftac Classic Database C-30). With the help of a manufactured solution provided in [2], the 
true error and other relevant uncertainty measures are analyzed. In the backward facing step case 
experimental results published by Driver and Lee [3] are compared with numerical solutions 
along with the calculated numerical uncertainties. The numerical simulations were performed 
using the commercial flow solver FLUENT along with some user defined functions. 
 
1.0 INTRODUCTION 

Along with the rapid increase in applications of CFD the interest in formulating some kind of 
quality control on the CFD solutions has increased. The uncertainty measures are usually based 
on some error estimates. The errors are primarily related to iteration convergence, grid 
convergence, and modeling errors among many others. This paper focuses on grid-convergence 
error also referred to as discretization errors. The iteration errors can be significant [4-7] 
however, in this work we reduce them to very small values so that they do not pollute the 
solution, hence the dominant numerical error is associated with discretization. The recommended 
method for discretization error estimation is the Richardson extrapolation (RE) method [8, 9]. 
This method has been studied by many researchers and its shortcomings have been widely 
investigated [10-19]. But, the RE method is far from perfect. The local RE values of the 
predicted variables may not exhibit a smooth, monotonic dependence on grid resolution, and in 
time dependent calculations, this non-smooth response becomes a function of time and space. 
Nonetheless, it is currently the most robust method available for the prediction of numerical 
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uncertainty. The method presented here can be considered as a variant of RE with more desirable 
features. Since there are many ways for estimating numerical uncertainty and errors, which are 
based on certain assumptions, such as monotonic convergence and being in the asymptotic range 
in case of RE, it is imperative that these methods be also validated using some benchmarks.  
 

In this study the performance of the Approximate Error Scaling (AES) method when used in 
conjunction with the Grid Convergence Index (GCI) uncertainty estimation method is evaluated 
in assessing the numerical uncertainty. Then the same methodology is then applied to the case of 
flow over a backward facing step. Even though the flow regime in the boundary layer type flow 
(MS) is turbulent; the numerical solutions are carried out for pseudo-laminar flow taking 
advantage of the known exact solution. This was done in order to avoid the errors implicit in 
turbulence models. The transformation from turbulent to laminar flow was done by defining a 
momentum source term which precludes the pressure gradient term; for more details see [20]. In 
the backward facing step (BFS) case two turbulence models were used; Spalart-Allmaras model 
and standard k-ε model. In both of the test cases (MS and BFS) commercial flow solver 
FLUENT 6.3 is used for numerical simulations with various grid densities. Also these numerical 
simulations were performed using 1st and 2nd order upwind discretization schemes for the 
convective terms. User Defined Functions (UDFs) were used to prescribe boundary conditions 
specified in the problem and the sources in the case of the MS.  
 
2.0 ERROR ESTIMATION METHOD 

The method developed to predict the true error is a variant of the extrapolation method 
proposed by Celik et al. [1, 21, 22] named Approximate Error Scaling method (AES). This 
method assumes that the true error, Et is proportional to the approximate error, Ea, (see Appendix 
for more details) that is 
 h

t
h
aE cE=  (1) 

where c represents the global proportionality constant.  
The true error is defined by 
 h

tE hφ φ= −  (2)  
and the approximate error given by 
 h

a hE hαφ φ= −  (3) 
 

In Eqn. 3, α is the grid refinement or coarsening factor i.e. α1=h2/h1, α2=h3/h2, etc., where hi 
represents the average grid size, also h1<h2<h3 which means that subscript “1” denotes the 
smallest grid size (finest grid) and subscript “3” the coarsest grid. 
 

In order to apply Eq. (1) three grid calculations (triplet) are needed. The post-processing of 
the numerical solutions on three different grids ( )1 2 3, ,φ φ φ  and the use of Eq. (1) enable 
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The global proportionality constant c is calculated from the local constants as follows 
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N in Eqs. (6) and (7) represents the total number of cells in the coarse grid. It is important to note 
that φ  in Eqs. (4) and (5) represents each of the variables solved by the numerical calculations 
i.e. x-velocity component, y-velocity component and pressure when solving the Navier-Stokes 
equations for laminar flow in 2-D, therefore there is a global proportionality constant for each 
variable being solved. 
 
3.0 UNCERTAINTY ESTIMATION METHOD 

Once the global proportionality constant has been calculated as shown by Eq. (6) and making 
use of the relationship between the true error and the approximate error as given by Eq. (1) the 
uncertainty can be calculated using the GCI uncertainty estimator. The calculation of the 
uncertainty is based on the use of the fine and medium grids from the same triplet used to 
calculate the global proportionality constant. Re-writing Eq. (1) for the grids mentioned above 
 fm

t
fm

aE cE=  (8) 
where the superscript fm means that interpolation was performed from the fine grid to the 
medium grid. The definitions of the true and approximate errors shown in Eq. (8) are given by 
 fm fm num

t ext fmE φ φ= −  (9) 
 

 fm num num
a fm mE φ φ= −  (10) 

where fm
extφ  represents the extrapolated value at zero grid size which is an estimate of the 

analytical value. Substituting Eqs. (9) and (10) in Eq. (8) and solving for fm
extφ  we get 

 ( )fm num num num
ext fm fm mcφ φ φ φ= + −  (11) 

 
Then the uncertainty is calculated using the GCI which is given by  

 1.25
fm

ext f

f

GCI
φ φ

φ
−

=  (12) 

where fφ is the interpolated value from the numerical solution on the fine grid. 
The methodology described previously for the calculation of the proportionality constant as 

well as for the uncertainty is the same when applied to local quantities or integral quantities. 
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4.0 MATHEMATICAL FORMULATION AND NUMERICAL SETTINGS 

In this work, two test cases are studied. The first test case emulates the boundary layer type 
flow which has a manufactured solution that satisfies identically the continuity and the 
momentum equations in the turbulent regime for an incompressible flow over a stationary wall. 
For more detailed information see [2, 20]. The second test case corresponds to flow over a 
backward facing step (Ercoftac Classic Database C-30) in the turbulent regime. In both cases 
CFD calculations were performed using the commercial software FLUENT 6.3. 
 
4.1 Case of Boundary Layer Type Flow (Manufactured Solution) 

In the case of the MS the actual flow regime corresponds to a turbulent flow since the 
Reynolds number is 106. However, as the principal objective of this work is to assess the 
numerical uncertainty, the error induced by the turbulence model was eliminated by modifying 
the equations in such a way that the Navier-Stokes equations are solved for laminar flow and the 
turbulence effects of the flow were introduced as source terms in the momentum equations, see 
[20]. 

The computational domain for the MS is defined on a square with 0.5≤ x≤ 1 and 0≤ y≤ 0.5. 
Except for the south (bottom) boundary, the boundary conditions prescribed were the analytical 
velocity profiles expressed in terms of x and y components. This was accomplished by making 
use of UDFs. The south boundary was set as a wall with the no-slip condition.  

In order to assess the numerical uncertainty several cases were run. The cases considered 
differ from each other in their grid density. Two sets of cases were defined as shown in Table 1. 
An orderly grid refinement was done between each case for every set. In each set the average 
grid size was decreased by circa a factor of four (i.e. grid doubling in both directions) 

 
Table 1 Grid sets for the cases studied for uncertainty assessment (MS) 

Case Set I Set II 
1 10x10 15x15 
2 19x19 30x30 
3 40x40 60x60 
4 80x80 120x120

 
The selected grids were structured, non-uniform with an expansion ratio of 0.95 in y-

direction. The grid in y-direction is finer near the south boundary in order to predict, with 
reasonable accuracy, the velocity gradients inside the wall boundary layer. Along the x-direction 
the grid is uniform. All the cases shown in Table 1 were run with 1st and 2nd order upwinding 
schemes for the convective terms. 

  
4.2 Case of Flow Over a Backward Facing Step 

As mentioned previously the flow regime for the BFS case is turbulent with a Reynolds 
number of 5x104 and a reference velocity of 44.2 m/s. Here the Reynolds Averaged Navier-
Stokes (RANS) equations are solved along with the one equation Spalart-Allmaras turbulence 
model and with the two equations standard k-ε turbulence model. 
 In a similar way as in the manufactured solution case, use of UDFs to prescribe the boundary 
conditions was needed in the flow problem over the backward facing step. At the inlet of the 
backward facing step, profiles of x-velocity component and modified turbulent viscosity were 
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prescribed when the Spalart-Allmaras turbulence model was used. Profiles of turbulent kinetic 
energy and turbulent dissipation rate at the inlet of the backward facing step were also prescribed 
when the standard k-ε model was used. These inlet profiles were provided by the organizers of 
the 2006 Lisbon Workshop [2] as Fortran functions. At the outlet, pressure was prescribed as 
constant. The rest of the boundaries were treated as smooth walls (no roughness) with the no slip 
condition. Along with the standard k-ε model the approach of standard wall functions was used 
as the near-wall treatment. The computational domain is -4H≤ X≤ 40H and 0≤ Y≤ 9H, where H 
is the height of the step (1.27 cm) and also the reference length. The origin of the coordinate 
system is located at the lower corner of the step and the height of the inlet section is 8H. 
 The grids used for the BFS consisted of 20774 (143x150) cells for the finest grid (G1), 344 
(18x20) cells for the coarsest grid (G4). The medium grids have approximately 5146 (72x74) 
cells (G2) and 1312 (36x38) cells (G3). The refinement factor between consecutive grids was 2 
in both directions. The four grids were structured, uniform in x-direction and non-uniform in y-
direction. The expansion ratio was not constant, varying in the range from 0.7 to 1.0 from 
coarsest to finest grid in different sub-regions. The grid is finer near the walls and in the shear 
layer region. As in the case of MS the four grids described above for the BFS case were run with 
1st and 2nd order upwinding schemes for the convective terms. Converged solution for G1 using 
the standard k-ε model and 2nd order discretization could not be achieved. 
 
5.0 RESULTS 

All the data presented in this work was obtained with 1st and 2nd order upwinding schemes 
(for convection) in the commercial flow solver FLUENT. The scheme applied to diffusion terms 
is second order central differencing. Double precision was used for all the calculations so that the 
round-off errors are minimized and thus can be considered negligible. The solution was 
considered a converged solution when scaled residuals were reduced to machine accuracy. The 
highest scaled residual for the MS case was in the order of 10-15 and for the BFS in the order of 
10-9 for the second order scheme using the Spalart-Allmaras model and in the order of 10-15 with 
the standard k-ε model in both 1st and 2nd order schemes. 
 
5.1 Case of Boundary Layer Type Flow (Manufactured Solution) 

The convergence of the flow variables (u, v and P) in the case of the MS using the pseudo-
laminar model for 1st and 2nd order calculations were analyzed in three points of interest for all 
the grids listed in Table 1. These three points are (0.6, 0.001), (0.75, 0.002) and (0.9, 0.2) and 
from now on they are called first, second and third point respectively. In Fig. 1 the grid 
convergence at the first and third points is shown for the relevant flow variables.  

From Fig. 1 it can be seen that away from the wall (third point) 1st and 2nd order calculations 
show monotonic convergence while close to the wall only pressure shows a monotonic 
convergence. Close to the wall (first point) both velocity components seem to converge non-
monotonically when the governing equations are discretized with first order approximations. In 
general, 2nd order calculations show better monotonic convergence than 1st order calculations. 
Also very near the wall (first point) u velocity is far from convergence. 

The analytical values of the flow variables at the same three points mentioned above are 
presented in Table 2. Comparing the information shown in Table 2 with the numerical solutions 
obtained in the finest grid at the same points (Fig. 1), it can be concluded that numerical 
calculations converge to the analytical solution in 1st and 2nd order calculations for the y-velocity 
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component and pressure in the three points. The u velocity converges to the MS value in all 
points only with 2nd order calculations and, with 1st order it converges only away from the wall. 
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Figure 1 Convergence of flow variables at points (a) x=0.6, y=0.001 and (b) x=0.9, y=0.2 
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Table 2 Exact values of the flow variables 

Point u v P 
(0.6, 0.001) 7.5224e-3 6.2686e-6 0.0096148
(0.75, 0.002) 0.012035 1.6046e-5 0.019173 

(0.9, 0.2) 0.791275 0.077041 0.016148 
 

From now on, uncertainties in the same three points of interest are reported. For brevity only 
the results obtained with the coarse triplet from set I (see Table 1) are presented, but all the other 
triplet combinations from the two sets of grids are briefly discussed. In case of MS, true 
uncertainties Ut are calculated and compared with the estimated uncertainties to assess the 
performance of the uncertainty estimation method proposed in this work. This can be considered, 
in a way, validation of the proposed error estimation method. In Table 3 the estimated and true 
uncertainties for the flow variables are presented for the 1st order calculations. The same 
information is shown in Table 4 but with results obtained from 2nd order calculations. 
 

Table 3 Calculated values and uncertainties from 1st order calculations  

based on the coarse triplet from set I 

Position X=0.60, Y=0.001 X=0.75, Y=0.002 X=0.90, Y=0.200 
u* 3.966e-3 -1.167e-3 0.790818 

U(u) % 125.55 1222.5 0.2387 
Ut(u) % 112.11 1413.7 0.072 

v* -3.2332e-4 -2.55e-3 0.07797 
U(v) % 243.33 188.82 2.827 
Ut(v) % 127.42 125.78 1.486 

P* 9.631e-3 0.019424 0.016837 
U(P) % 9.908 3.562 8.143 
Ut(P) % 0.205 1.614 5.108 

* the reported values for u,v and P are those interpolated from the solution on the grid 40x40 
 

As can be seen from 1st order calculations (Table 3) the estimated uncertainty bounds the true 
uncertainty except for the second point in the x-velocity component. In Table 4 (2nd order 
calculations) the true uncertainty is bounded by the estimated uncertainty at all the points and for 
all flow variables. When using the fine triplet from the same set of grids (set I) two and six cases 
are not bounded for 1st and 2nd order calculations, respectively. This apparently indicates that the 
proposed uncertainty estimation method performs better when a coarse triplet i.e. coarse grids, is 
used. When using the grid set II, which is a set with finer grids compared to set I, it was observed 
that the performance of the method decreased. In summary, when using grid set I, and 
considering first and second order calculations, the estimated uncertainty bounds 94% and 55% 
of the cases using the coarse and fine triplet, respectively. With set II, 72% of the cases were 
bounded with the coarse triplet and only 33% with the fine triplet. It is important to note that the 
estimated uncertainties; either bounded or unbounded, in general, are very close to the true 
uncertainties, therefore the 33% of the bounded cases reported above can be misleading  about 
the performance of the method. 
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It is important to note that these uncertainty calculations were performed with solutions that 
do not necessarily converge monotonically and/or to the analytical solution. 
 

Table 4 Calculated values and uncertainties from 2nd order calculations 
 based on the coarse triplet from set I 

Position X=0.60, Y=0.001 X=0.75, Y=0.002 X=0.90, Y=0.200 
u* 7.314e-3 0.012071 0.791084 

U(u) % 4.46 9.26 0.36 
Ut(u) % 3.55 0.37 0.03 

v* 3.9515e-6 2.3611e-5 0.077021 
U(v) % 1220.52 132.73 0.12 
Ut(v) % 73.30 40.05 0.03 

P* 0.009155    0.018703    0.015650 
U(P) % 10.14 26.31 7.05 
Ut(P) % 6.27 3.14 3.98 

* the reported values for u,v and P are those interpolated from the solution on the grid 40x40 
 

The proportionality constants calculated with Eq. (6) are presented in Table 5. It is interesting 
that the proportionality constants do not converge to the theoretical value (asymptotic range) i.e. 
1.33 for 2nd order and 2.0 for 1st order calculations, when the grid is refined using set I, but they 
approach the theoretical values with set II. In general, the proportionality constants for 2nd order 
calculations are smaller than those calculated from first order calculations, which is expected 
since 2nd order calculations are usually more accurate solutions. 
 

Table 5 Global proportionality constants for coarse triplet from set I 

Order u v P 
1st 1.999 1.311 1.455 
2nd 0.9718 0.9702 0.9850 

 
The integral quantity called friction resistance was calculated along with its uncertainty at the 

bottom wall. These results are reported in Table 6 using the coarse grid triplet of set I along with 
1st and 2nd order calculations. Also in the same table, the calculated proportionality constant is 
reported. Again, it can be seen that the proportionality constant for 2nd order calculations is 
smaller than that for the 1st order. 
 

Table 6 Calculated values and uncertainties for the friction resistance at the bottom wall 
based on the coarse triplet from set I 

Order CF  U(CF) % C 
1st 1.155024e-6   418.1  3.819 
2nd 3.189875e-6 3.43  1.672 

 
In general it can be concluded that uncertainties calculated from 2nd order calculations are 

smaller than those obtained from 1st order calculations as it is expected. 
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5.2 Case of Flow Over a Backward Facing Step  

Similarly to the MS case, three points of interest were selected in the BFS case, these points 
are located at (0, 1.1H), (H, 0.1H) and (4H, 0.1H), where H is the step height. The convergence 
of the flow variables using both turbulence models and 1st and 2nd order discretizations were 
analyzed at these points. The convergence at all these points shows in most of the solved 
variables to be non-monotonic. As an example of convergence, Fig. 2 shows the convergence of 
the two velocity components and pressure at point (0, 1.1H) with both turbulence models and 
with first and second order calculations. In the reattachment point and in integral quantities such 
as friction resistance and pressure resistance the convergence showed a monotonic trend in some 
cases. When the Spalart-Allmaras model was used monotonic convergence in the reattachment 
point and in friction resistance was observed with 1st and 2nd order calculations. The standard k-ε 
model showed monotonic convergence in 1st order calculations. 

 
In Table 7 the calculated values for x and y-velocity components as well as pressure and 

turbulent viscosity along with their estimated uncertainties are reported for the three points of 
interest mentioned above. This information was obtained with both turbulence models, using 2nd 
order discretization schemes and the coarse triplet for the BFS case. From Table 7 it can be seen 
that the estimated uncertainties using the Spalart-Allmaras model are smaller than those 
estimated with the standard k-ε model. Completely opposite to the behavior observed in local 
quantities, when integral quantities such as friction and pressure resistance are analyzed, they 
show that uncertainties estimated with the standard k-ε model are smaller as shown in Table 8. 
Also in Table 8 the calculated proportionality constant used by the uncertainty estimation 
method here proposed is reported. A trend similar to that shown by local flow variables is 
observed by the reattachment point as shown in Table 9. 

 
Different to the MS case, in the BFS case there is no exact solution to compare and assess the 

performance of the uncertainty estimation method, however there is experimental data available 
[3] which can be used for these purposes. In Fig. 3 experimental and numerical x and y-velocity 
profiles at x=H are shown. The numerical profiles from 2nd order calculations obtained with both 
turbulence models used in this work are presented along with their calculated validation 
uncertainties in this figure. The numerical results correspond to the solution on the finer grid of 
the coarse triplet. As can be seen from Fig. 3 the predicted velocity along with its validation 
uncertainty of the standard k-ε model binds more experimental data than the Spalart-Allmaras 
turbulence model and this is because (i) the standard k-ε model predicts better velocity fields and 
(ii) as mentioned above the uncertainties calculated for the standard k-ε model are larger than 
those estimated for the Spalart-Allmaras model. Similar trends are observed at other two 
different x-locations. 
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Figure 2 Convergence of flow variables at points x=0, y=1.1H using (a) Spalart-Allmaras 

model and (b) standard k-ε model 
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Table 7 Calculated values and uncertainties for flow variables from 2nd order calculations 
based on the coarse triplet using Spalart-Allmaras and standard k-ε turbulence model 

S&A 
Position x=0.0, y=1.1H x=H, y=0.1H x=4H, y=0.1H 

u* 0.684136 -0.196959 -0.113545 
U(u) % 5.41 27 54 

v* -0.003005 0.012537 -0.011620 
U(v) % 73.36 42.46 7.46 

P* -0.1942 -0.2375 -0.0930 
U(P) % 3.11 1.9 11.28 

νt 8.8191e-4 7.4879e-4 1.2413e-3 
U(νt) % 38.11 6.08 3.28 

Standard k-ε 
Position x=0.0, y=1.1H x=H, y=0.1H x=4H, y=0.1H 

u* 0.645811 -0.095006 -0.071516 
U(u) % 7.85 82.35 309.48 

v* -0.003602 0.008161 -0.005873 
U(v) % 249.6 16.46 82.36 

P* -0.1945 -0.2165 -0.1259 
U(P) % 4.31 4.94 61.61 

νt 2.3575e-4 2.3687e-3 5.6166e-3 
U(νt) % 1269.82 413.88 120.76 

* the reported values are those calculated from the solution on the finest grid of the triplet 
 

Table 8 Calculated values and uncertainties for the friction resistance 
at bottom and top walls and pressure resistance from 2nd order calculations  

based on the coarse triplet using Spalart-Allmaras and standard k-ε turbulence model 

Turbulence model CF,b  U(CF, b) % C 
Spalart-Allmaras 0.023812 30.46 5 

Standard k-ε 0.0318969 3.183 0.50 
 CF, t  U(CF, t) % C 

Spalart-Allmaras 0.044202 1.906 1.236 
Standard k-ε 0.043287 24.485 % 5.0 

 CP U(CP) % C 
Spalart-Allmaras 0.105674  3.31 0.5 

Standard k-ε 0.106512 9.69 % 0.5 
 
 

Table 9 Calculated values and uncertainties for the reattachment point from 2nd order 
calculations based on the coarse triplet  

Turbulence model xreatt/H U(xreatt/H) % C 
Spalart-Allmaras 5.771560 2.9 0.7123 

Standard k-ε 5.548599 24.36 0.5 
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Figure 3 Velocity profiles and their uncertainties at x=H from 2nd order calculations with 

the standard k-ε model on the coarse triplet  
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Figure 4 Velocity profiles and their uncertainties at x=H from 2nd order calculations with 

the Spalart-Allmaras model on the coarse triplet 
 
 

 
6.0 CONCLUSIONS 

Numerical calculations were performed using first and second order discretization schemes 
in two test cases; (i) in a boundary layer-type flow which has a manufactured solution and (ii) in 
a flow over a backward facing step. The uncertainty in both cases was estimated using the AES 
(approximate error scaling) uncertainty estimation method proposed in this work which is based 
in the idea that the true error is proportional to the approximate error. 
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In the case of the MS (boundary layer type flow); monotonic convergence was observed only 
with second order calculations for both velocity components in the vicinity of the wall. Away 
from the wall first and second order calculations showed monotonic convergence in all the flow 
variables. The estimated uncertainty performs pretty well in first and second order calculations 
since it bounds the true uncertainty. It was observed that the uncertainty estimation method 
performs better when coarse triplets are used. Therefore, it can be said that the methodology 
presented in here to estimate uncertainty is valid not only in the asymptotic range since coarse 
grids have been used and the method performs better with coarse grids. Also it has been shown 
that the proposed method is not restricted to be used for cases converging monotonically. 

 
In the BFS case non-monotonic convergence was observed in most of the points of interest 

and flow variables when the Spalart-Allmaras and standard k-ε turbulence model were used with 
first and second order discretization schemes. The estimated uncertainties in the local flow 
variables and the reattachment point with the Spalart-Allmaras model were smaller than those 
calculated with the standard k-ε model. In the integral quantities the opposite behavior was 
observed. Comparison of the numerical results with experimental data shows that the standard k-
ε model predicts the flow field better than the Spalart-Allmaras model. In fact, when the 
validation uncertainty is used along with the numerical results, the results obtained with the 
standard k-ε model bounds the experimental data better than those obtained with the Spalart-
Allmaras model. 

 
In case of 1st order upwind scheme the difference between the two turbulence model 

predictions is in the order or slightly larger than the discretization error, whereas  in case of 2nd 
order scheme this difference is usually less than or in the same order as the discretization error. 
In conclusion, the performance of these two models seems to be very similar for the case of BFS 
application. 

 
 

APPENDIX: On the Relation of AES method to RE 
 
The AES method assumes that the extrapolated error to zero grid size (here and after referred to 
as Et) is proportional to the approximate error defined in an ordered manner as follows 
 
 ( )1 1 ;   1, 2,3.....t i i iE C iφ φ φ φ+ += − = − =   (A1) 
 
Such that  where α<1.0 is the grid refinement factor .Equation (A1) does not 
make any explicit assumption about E

( ) ( )1h i h iα= +

t being a power series expansion, hence does not require 
any calculation or use of the apparent order, p. Writing the above equation for i=1 and 2 and 
solving for C yields 
 
 3 2

3 22
C

1

φ φ
φ φ φ

−
=

− +
            (A2) 

 
for the local value of the error scaling factor C. The assumption here is that the first and the 
second differences that appear in the numerator and the de-numerator of Eq. (A2) reflects the 
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characteristics of the numerical scheme used to produce these numerical solution, hence it is an 
ordered approximation, but the order need not be known explicitly. 
 
However, if one is to assume that Et can be expressed in terms of a Taylor series, then relations 
can be derived for C that will explicitly relate it to the grid size, h, and the refinement factor α. 
For example let us assume that 
 
 2

1 2tE b h b h= +   (A3) 
 
Using Eqs. (A1) and (A2) it can be shown that 

 
( )

( )

1

1 2

1 2

1
1

1
b b h

C
b b h

α α α
α

−
⎧ ⎫+ +⎡ ⎤⎪ ⎪⎣ ⎦= −⎨ ⎬+ +⎪ ⎪⎩ ⎭

                    (A4) 

 
Eq (A4) shows that C is indeed an ordered parameter. Moreover, in the asymptotic range it 
attains values of 2 and 4/3 for a first order method ( 2b =0) and a second order method ( 1b = 0), 
respectively, in the case of grid doubling, i.e. α = ½. Similar relations can be derived for other 
cases depending on how the Taylor series is represented in terms of α and h. But it should be 
emphasized again that Taylor series expansion of Et is not required for application of AES 
method. 
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