
Summary

This paper describes a verification exercise of a 
RANS code with a k-ω Baseline turbulence 
model. First a verification of the code by the use 
of manufactured solutions, where a 2D boundary 
layer look alike is used. The order of accuracy 
found is higher than 1 but lower than 2.

Then an uncertainty analysis of the manufactured 
case and a 2D backward facing step is performed. 
For the used grids the solver has some problems 
of predicting convergent values for local flow 
quantities, but behaves much better for integrated 
quantities.

Finally a validation against experimental data 
from the backwards facing step is done. In 
regions of uncomplicated flow the convergence is 
acceptable but the length of the recirculation 
region is under predicted by 11%. 

Introduction

Since the previous Lisbon workshop the 
discretization of the convective terms and the 
continuity equation have been replaced with a 
Fromm scheme. This apparently improved the 
prediction of ship wakes with bilge vortices, but 
no formal verification or validation of the code 
has not been done since the change.

Numerical Method

To model the flow, the steady-state RANS 
equations together with Menters k-ω Baseline 
(BSL) model (Menter, 1993) is used. The solid 
wall boundary condition for ω is treated 
according to Hellsten and Laine (1997) which 
also allows for treatment of rough walls, but this 
feature was not used in the present investigation.

The equations are discretized with a finite volume 

method. For the convective fluxes the 
approximate Riemann solver of Roe is used (Roe, 
1981) (Kaurinkoski and Hellsten, 1998) 
(Vierendeels et al, 1999), while for the diffusive 
fluxes central differences around the cell face 
centers are used. Flux-correction with a min-mod 
limiter is used to increase the accuracy to second 
order in regions of smooth flow.

ADI is used to solve the equations. The tri-
diagonal systems that are solved contains the first-
order Roe convective terms and the second order 
diffusive terms, while the second-order flux 
corrections are used as an explicit defect 
correction. Each element in the tri-diagonal 
matrix is a 5x5 matrix. For each sweep a local 
artificial time-step is calculated based on the CFL 
and von Neumann numbers in all directions 
except the implicit one. If it were not for the 
source terms in the turbulence equations the 
above described discretization will guarantee that 
k and ω are kept positive. To maintain this in the 
presence of the source terms, the negative parts of 
the k-ω source terms are Newton-linearized and 
treated implicitly (Merci et.al. 2000). Strictly this 
does not guarantee positivity unless a time-step 
restriction is added, but in practice the artificial 
time-steps based on convection and diffusion are 
short enough that negative values of k and ω do 
not occur.

Boundary Conditions

Two layers of ghost cells are used around the 
boundaries. The variables in these cells are 
calculated at the same time as in the interior i.e. 
the values are updated within the ADI iteration.

For this exercise two different boundary 
conditions are used. The first one is Dirichlet 
boundary condition where a value of variable is 
specified on the boundary and extrapolated to the 
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ghost cells with second order accuracy.

The second is the Neumann boundary condition 
where a normal flux at the boundary is specified 
and used to linearly extrapolate to the ghost cells.

Since this treatment of the ghost points give to 
low order for the diffusive terms a special stencil 
is used for the diffusion along boundaries.

Error Measures

For the interior the continous L1 and L2 norms are 
used with the integrals approximated with sums 
over all cells
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Due to the formulation of the discrete equations, 
the residuals are expressed as error per cell so in 
that case the terms in the sum are not multiplied 
by the cell volume.

Uncertainty Estimation Procedure

An uncertainty estimation proposed by Eca, 
Hoekstra and Toxopeus (2005) is used. The 
following procedure were used:

• Determine the observed order of accuracy, p, 
from the available data.

• For 0.95 ≤ p < 2.05, U is estimated with 
the Grid Convergence Index proposed and the 
standard deviation U S of the fit: 

U=1.25∣RE∣U S . 
The extrapolated value  is taken as 
0=1RE where 1 is the value from 

the finest grid.

• For 0 < p < 0.95, the same error estimate is 
made but is then compared with the data range 
M multiplied by the safety factor 1.25, so 

that U is obtained from: 
U=min 1.25∣RE∣U S ,M  .

If M1.25∣RE∣U S  then 0=1

• For p ≥ 2.05, , 1.25∆M ), 
U=min 1.25∣RE

*
∣U S ,M  where

RE
* is calculated from a function with fixed 

p=2 fitted to the data. The extrapolated value 
is 0=1RE

* .

• If monotonic convergence is not observed, 
U=3M and 0=1 .

Test Case 1: Verification with 
Manufactured Solution

Grids

The verification was done on a sequence of 4 
Cartesian grids starting with 10x20 nodes and 
doubling the number of cells in both directions in 
each refinement so that the finest grid was 
73x153 nodes. 

Boundary Conditions

In the table below, fi is the i:th component of the 
manufactured solution.
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An improvement to this would be to use the 
normal derivatives of the manufactured  solution 
∂ f i /∂n in the Neumann conditions.

Results

The convergence rate p computed according to 
the uncertainty estimation procedure for the L1 

and L2 norms of the solution minus the 
manufactured solution is given below.



u v p k t

L1 1.93 1.38 2.00 2.00 2.00

L2 1.98 1.69 1.69 1.62 2.00

Values equal to 2.00 indicate that p>2.05 and the 
fit has been re-computed with p==2.

Verification of Cf yielded

CF U(C F ) C Fmanu 

3.84 10-6 0.43  10-6 3.13 10-6

Test case 2: Validation with the 
Ercoftac Classic Database C-30 
Backward Facing Step

Grids

The same three grid sets supplied for the 2006 
workshop were used with 101, 121, 141, 161, 
181, 201 and 242 nodes in each directions. They 
will be referenced as g7, g6, g5, g4, g3, g2 and g1 
respectively.

Boundary Conditions

In the table below, gi is the i:th component of the 
supplied inlet profile.

Left Top Bottom Right
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Results

The results from the solution verification are 
given in the tables below

Integrated SetA SetB SetC

(CF)bottom 0.0306 0.0321 0.0313

U(CF)bottom 0.0138 0.0014 0.0140

(CF)top 0.0478 0.0467 0.0478

U(CF)top 0.0205 0.0042 0.0202

(CP)bottom 0.1076 0.1021 0.1008

U(CP)bottom 0.0117 0.0082 0.0089

x=0, y=1.1 SetA SetB SetC

u 0.6793 0.6907 0.6900

U(u) 0.0312 0.0098 0.1970

v 0.0146 0.0140 -0.0132

U(v) 0.0180 0.0283 0.0951

p -0.0985 -0.0903 -0.1054

U(p) 0.0142 0.0113 0.0885

t
0.00145 0.00149 0.00143

U t 0.00022 0.00006 0.00115

x=1, y=0.1 SetA SetB SetC

u -0.1085 -0.1145 -0.0996

U(u) 0.0619 0.1207 0.0488

v 0.0119 0.0088 0.0117

U(v) 0.0043 0.0043 0.0055

p -0.1091 -0.1092 -0.1004

U(p) 0.0225 0.0122 0.0047

t
0.00156 0.00179 0.00146

U t 0.00181 0.00178 0.00156



x=4, y=0.1 SetA SetB SetC

u -0.0870 -0.0829 -0.0688

U(u) 0.0505 0.0543 0.0673

v -0.00801 -0.00804 -0.00891

U(v) 0.00077 0.00072 0.00067

p -0.0619 -0.0545 -0.0582

U(p) 0.0085 0.0083 0.0154

t
0.00605 0.00601 0.00592

U t 0.000076 0.00015 0.00048

The results from the different grid sets are mostly 
consistent, even though SetC deviates for some 
data points. Looking at the uncertainties they are 
generally too large for successful validation (or 
falsification) of the computations.

With that said we proceed to look at the actual 
validation. The reattachment is predicted to close 
to the step,

x-reattach SetA SetB SetC

S 5.516 5.480 5.669

U(S) 0.587 0.108 0.577

D 6.26 6.26 6.26

and this is the reason for the largest discrepancies 
between calculation and experiments, as 
exemplified by the u component of velocity at 
x=H in the plot above.

Discussion

In most points the uncertainty in the computations 
is too large to allow validation. Even though the 
results compare relatively well to experiments in 
major parts of the domain, it would take a 
substantial reduction  of the uncertainties to be 
able to positively consider the model validated or 
falsified. An investigation using finer grids, and 
possibly excluding some of the coarser grids in 
the current set, would be needed to  resolve this 
issue.

To get a hint of whether the under prediction of 
the recirculation zone is a modeling error or a grid 
resolution problem, an EASM turbulence model 
will be applied to the same set of grids.
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