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1 Introduction

Accurate and reliable predictions of fluid flows have been the topic of much research over
the past decades. A review of the literature reveals that, in many cases, predictions of a
given flow by different authors show unexpectedly large scatter. This can be especially dis-
concerting when people produce vastly different predictions while using similar models and
numerical methods. Thus, the question of the error associated to numerical solutions arises
to determine to which extent a solution is reliable. Irrespective of the quality of a mathemat-
ical model, the accuracy of a numerical procedure or the attention paid to numerical linear
solver, an error will always exist. The quantification of this error is of great importance since
it ascertains the trust that one can legitimately have in the computed solution. A growing
effort has been undertaken by the computational science community to quantify uncertainty
in computer simulations. In Computational Fluid Dynamics (CFD) this endeavor has led to
a broad discussion on Verification and Validation (V&V) by several organizations such as the
ATAA, the ASME, the ERCOFTAC or the ITTC Resistance Committee.

Following, the first two workshops on CFD Uncertainty Analysis, the third edition of this
event proposes activities that cover the three essential steps in V&V as discussed in Roache’s
book [1] : (1) Code Verification; (2) Solution Verification; and (3) Validation. Verification
is defined as a synonym for solving the equations accurately (Solving the equations right).
Hence, Verification is essentially and strictly in mathematical and numerical analysis and
performed in two steps. The first one is Code Verification which aims at identifying and re-
moving any programming error. Once this step is completed, one can focus on the other types
of errors having full confidence in the solver at hand. Furthermore, the effective convergence
rate of the numerical methods used is assessed numerically. The Method of the Manufactured
Solution (MMS) [2] provides a rigorous framework to easily perform Code Verification. More-
over, the performance of error estimators and reliability of uncertainty estimation procedures
can also be evaluated by comparison to true errors. The second step, Solution Verification,
aims at evaluating the discrepancy between the exact solution to the differential equations
modeling the phenomenon of interest and the exact solution to the algebraic equations arising
from discretization. When computer round-off and iteration errors can be deemed negligible,
Solution Verification reduces to the evaluation of discretization errors. The third step, Vali-



dation, is the process of determining if the right equations are solved for the process at hand
(Solving the right equations). It is essentially and strictly an engineering activity involving
comparison with laboratory or field data. It goes without saying that one performs Validation
only with verified simulations obtained from verified codes.

This paper presents and analyzes the results from the workshop activities for the set
of numerical techniques developed at the mechanical engineering department of the Ecole
Polytechnique of Montréal. As will be shown, numerical predictions and uncertainty analysis
all rely on grid adaptation. The paper is organized as follows. Section 2 gives a quick overview
of the modeling equations and numerical techniques that are well-established and documented
in the literature. Section 3 details the adaptive procedure along with the tools for Verification
and Validation. These seemingly unrelated topics are presented jointly because they are
closely linked together in our approach. Subsection 3.1 focuses on error estimation while
subsection 3.2 deals with uncertainty estimates. The next three sections linearly present the
outcomes of the three V&V exercises in the mandatory order : Code Verification in section 4,
Solution Verification in section 5 and Validation in section 6. Concluding remarks end our
report on the workshop activities in section 7.

2 CADYF at a glance

CFD predictions of turbulent flows are computed from the CADYF (Calcul et Analyse en
DYnamique des Fluides or Computer-Assisted DYnamics of Fluids) flow solver that has been
developed over the past 30 years. An up-to-date and detailed presentation of modeling equa-
tions and the numerical techniques to solve them can be found in Refs. [3, 4]. This section
only summarizes the main ingredients of the CFD approach used for the workshop activities.

2.1 Modeling equations

e The flows of interest are described by the Reynolds-Averaged Navier-Stokes (RANS)
equations.

e The system of equations is closed by computing the turbulent viscosity using the stan-
dard k£ — € model.

e To preserve positivity of the dependent variables (which has several advantages; see
Ref. [5]), we work with the logarithms of the turbulence kinetic energy and its dissipation
rate. The equations for K = In(k) and & = In(e) are derived by taking the logarithms
of the original equations for k£ and e. Hence, the turbulence model is unchanged; only
the computational variables are different.

e Wall functions are used to describe the solution in the near wall regions. Thus, the
computational wall boundary is taken at a distance d from the physical wall boundary.
In the gap between the flow is represented by the wall functions.

e We use the two-velocity scale wall functions described by Chabard [6] (see Ref. [3]).



2.2 Numerical techniques

e The resulting system of equations is solved by a finite-element (FE) method that uses a
mixed or velocity-pressure formulation. The discretization is based on the Taylor-Hood
triangle element (P,— P;). That is, the velocity and the logarithmic turbulence variables
are discretized using quadratic interpolation functions (py, = 3) and the pressure is
discretized by piecewise linear continuous functions (pg, = 2).

e To avoid non-physical oscillations in solutions of high Reynolds number flows, the
Streamline Upwind /Petrov-Galerkin (SUPG) stabilized formulation is used (see Refs. [7,
8]). It locally introduces small amount of artificial numerical diffusion which may lead
to reduced accuracy compared to the standard Galerkin formulation.

e All non-linear algebraic equations are linearized by Newton’s method.

e All linear algebraic systems are solved using a sparse direct solver using the Unsym-
metric MultiFrontal method (see Ref. [9]).

e The global system of equations are solved in a partly segregated manner (see Refs. [10,
11]).

e An adaptive remeshing procedure driven by the Zhu-Zienkiewicz (ZZ) error estimator
is used to yield grid independent numerical predictions (see Section 3.1).

3 Tools for Verification and Validation

3.1 Error Estimation and adaptive procedure

The accuracy of the finite-element approximation can be directly related to the local mesh
size. An adaptive remeshing procedure is employed to improve the accuracy, by refining
the mesh in regions of high error in the flow and turbulence variables. Regions targeted for
refinement are identified by the Zhu-Zienkiewicz (ZZ) error estimator [12, 13] which evaluates
estimates of elemental error norms. It has been shown to be asymptotically exact using a
proper measure (norm) of the error for a class of elliptic problems. The error estimator
is based on local projections of discontinuous quantities onto a local continuous polynomial
basis. For example, since the P, — P; element uses a piecewise quadratic basis for the velocity,
the stress tensor is linear and discontinuous. By projecting it onto a continuous polynomial
basis, we can derive an error estimate defined as the difference between the FE stresses
(denoted by the subscript k) and their projections (denoted by the subscript zz). Thus, the
elemental error can only be measured in the so-called energy norm (or a mathematically
equivalent such as the H' semi-norm). As a consequence, the following error norms are
considered in the present work :

H1U : |led||m = \// (Vey - Ve, + Ve, - Ve,) dQ (1)
Q
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HIP : |lep||m :\// Ve, - Ve, dQ (2
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EVK ¢ [lex]eqe = \//Q Vex - Vex dQ (3)

EVE : |leg|leqn = \//Q Veg - Veg d§) (4)

EVM : leg,|leqn = \//Q Vey, - Vey, df (5)

The exact error norms are obtained by considering the difference between the FE fields and
their exact counterparts when available (e.g. €y = Uexa —uy). The ZZ estimates are obtained
by considering the difference between the FE fields and their projections (e.g. ey = uz, —up).
The above expressions yield global error norms when integration is performed on the whole
domain 2. Elemental errors and estimates result from integration over a given element vol-
ume .

Once error estimates are obtained for all variables (flow and turbulence variables), an op-
timal mesh size distribution is determined using the asymptotic convergence rate of the
finite-element method and the principle of equidistribution of the error. The optimal mesh
is generated to redistribute the mesh sizes so that each element has the same contribution to
the norm of the total error. This is performed in an iterative fashion, beginning with a coarse
mesh and producing a sequence of meshes which reduce the error by a constant factor ¢ over
that of the previous mesh. The mesh characteristics (element sizes) are derived separately
for each dependent variable using the norms previously defined. The minimum element size
predicted by each of the dependent variable is selected on a given element. The computa-
tional domain is then remeshed using an advancing front technique. Details of this adaptive
remeshing procedure may be found in the literature [14, 15]. Note that an additional error
estimate for the eddy viscosity is also constructed since slowly varying fields of I and & can
result in rapid variations of y;. This is important to the success of adaptation in turbulent
flows since the eddy viscosity is the sole mechanism for transfer of momentum and turbulence
kinetic energy by turbulent fluctuations [16].

The ZZ error estimator belong to a category of single-grid a posteriori error estimators
known as auxiliary algebraic evaluations (AAE). Within AAE, it falls in the family of post-
processing techniques (or least-squares-based recovery techniques). In practice, recovery-
based estimators perform surprisingly well in estimating error norms (even in cases where
no super-convergent property holds). As will be shown and already illustrated in the liter-
ature [16, 15], the ZZ estimator is ideally suited for driving mesh adaptation. However, it
only yields error estimates in the elemental norm of the derivatives and not in quantities of
direct engineering interest. This constitutes a serious limitation for Verification and Valida-
tion because quantitative assessment of pointwise numerical accuracy is required. To remedy
the situation and achieve pointwise error estimates, we proceed as follows. The meshes are
generated by adaptive remeshing driven by the ZZ estimator. Error estimates in quantities
of engineering interest are obtained by a separate and different reconstruction. We use an
Lo least-squares approach (i.e. project the solution rather than its derivatives). We approx-
imate the exact field over an element by a polynomial of degree k + 2 where k is the degree
of the finite-element basis functions. A pointwise error estimate is computed by taking the



difference between the Ly elemental reconstruction and the finite-element solution in the ap-
propriate element containing the point of interest (see Ref. [17] for details). In what follows,
this error estimator will be referred to as the Wiberg estimator.

3.2 Uncertainty prediction within solution adaptation

The accuracy of the ZZ and Wiberg estimators in terms of exact error predictions will be
investigated in what follows using the manufactured turbulent flow problem (for which exact
solutions and thus true errors are available). Previous experiences from the authors [3] shows
that they provide almost asymptotically ezact error norm estimations (efficiency indexes tend
to a value close to one as grid cell sizes tend to zero) and yield the magnitude of the error
for pointwise quantities but can not predict any significant digit. However, regardless of
their efficiency, they both provide error estimates and not uncertainty predictions. For the
present study, we ultimately need 95% certainty error bars (Ugs) for Validation exercices as
well established in the literature and specified in the workshop instructions.

The most widely used numerical uncertainty procedure is the well-known Grid Conver-
gence Index (CGI) proposed by Roache [1]. It is based on Richardson extrapolation which
is extremely sensitive to noise in the data that originates from a number of causes. The
Least Squares CGI by Eca and Hoekstra [18, 19] partially alleviates this problem but the
method still suffers from irregularities in the refinement ratios between meshes in grid con-
vergence studies. Thus, the GCI procedures are limited to sets of geometrically similar grids
and hence unsuitable for adaptive grid calculations. In the case of adaptive remeshing, as
opposed to local mesh adaptation, this is even true for the last cycles of adaptation for which
error equidistribution has converged (so that almost uniform refinement is performed over the
computational domain). Regardless of the uniformity of the adaptation, there is no guarantee
(and actually little chance) that the mesh topology will be preserved from one cycle to the
next by the automatic mesh generator.

As suggested in Ref. [20], uncertainty predictions may be derived from AAE by applying
a factor of safety Fy to error estimates. Roache and Pelletier highlight that some Fy > 1
always is necessary even when using highly refined adapted grids, no matter how accurate is
the solution. Clearly, we agree with this principle since even when ZZ and Wiberg estimators
yield sharp error predictions, they are not consistently conservative. As a matter of fact,
they usually underestimate true errors. Now, evaluation of an adequate factor of safety is
not a straightforward task and would require to examine a statistically significant number of
cases. In Ref. [20], and references cited therein, it is reported that an efficient adaptive grid
strategy may be so effective that the finest grid resolutions always correspond to a required
Fy < 1.25. On the other hand, for 95% certainty error bars on the coarse grids obtained
during the initial stages of the grid adaptive process, the required Fj is sometimes above 3.
Based on our experience in the framework of turbulent flows, the range of possibilities for the
safety factor is even larger since (1) we report efficiency indexes close to one for global quan-
tities (i.e. resulting from integration over the whole computational domain) so that again Fj
should be lower than 1.25; (2) we report error estimates that only give the magnitude of the
exact error for pointwise quantities suggesting Fs = 10!

However, the solution-adaptive ZZ approach offers another error estimator : the difference
e between the last two meshes in the adaptive cycle as mentioned in Refs. [20] and [21]. Once



again, we face the tedious issue of deriving a factor of safety. Nevertheless, our previous
experiences indicate that F;, = 3 may be an appropriate choice to achieve 95% certainty.
This conjecture will be confronted here to the data for which true errors are available to test
the adequacy of the correlation of Fy = 3 with Ugs;. We do not pretend that this is sufficient
to allow for a definite conclusion and clearly much more subsequent testing is required to
access this uncertainty prediction procedure (once again on a statistically significant number
of cases). However, should it provide reliable uncertainty estimates, it would be yet another
powerful feature of mesh adaptivity. To summarize, following the notation in the workshop
validation procedure, we have :

Unum(f) = Fse  with e =|fo — fi| and Fs =3, (6)

where f; and fo are the solutions predicted on the last two adapted grids.

Obviously, the reliability of this grid-adaptivity based uncertainty prediction approach cru-
cially depends on the mesh adaptation procedure itself. To our beliefs, the following points
is a non-exhaustive list of requirements :

1. Mesh adaptation must be driven by an ordered error estimator and not merely an error
indicator (though such adaptive procedures may be effective for improving solution
accuracy).

2. All dependent variables must contribute to the error that drives mesh adaptation and
mesh characteristics (element sizes) must be based on the minimum mesh size predicted
over all variables.

3. Reliability may not be observed for the very first adaptive cycles. That is, sufficient re-
finement steps may be necessary for the difference between two solutions to be indicative
of an error estimate.

4. The error reduction factor ¢ (see Section 3.1) must be kept constant during the whole
adaptive process. Furthermore, its value is related to the safety factor Fs in Eq. 6.
Indeed, our empirical choice of Fy = 3 only is valid for ¢ € [0.6,0.8]. Other values
would increase or slow the convergence rate on successive grids making the e error
estimate more or less conservative respectively. Note that the error reduction factor is
always chosen in this range because it brings about the best performance out of the
adaptive process. Smaller values may lead to strong and possibly inadequate refinement
due to inaccurate error estimations (adaptation not only improves the accuracy of the
solution but also the error estimator which in turns allows for better mesh adaptation).
On the other hand, larger values generally lead to excessively slow adaptive processes.

4 Code Verification by the MMS

The first workshop exercise is Code Verification by the Method of the Manufactured Solution
(MMS) [1, 2, 22]. Since all numerical solutions are produced through an adaptive FE code,
we have to verify the flow solver, the error estimators and the adaptive process. We also take
the opportunity to have a closed-form solution to assess the reliability and accuracy of the
error estimators for global and local estimates as well as for uncertainty predictions.



4.1 Manufactured solution and Boundary conditions

The manufactured solution mimics the near-wall behavior of a two-dimensional, steady in-
compressible turbulent boundary-layer. The near-wall behavior of all the specified quantities
is similar to what is observed in near-wall turbulent flows. The Reynolds number is set to
one million. The manufactured solution variables and the source terms defining the modified
problem are described in details in Ref. [23]. Additional source terms are required for verifica-
tion of wall functions as detailed in Ref. [24]. Compared to what is described in Ref. [23], we
have to slightly modify the Manufactured Solution to fit our computational approach where
the computational variables for the turbulence model are the logarithms of £ and €. We have
added small constants oy and . to the manufactured variables k and € to avoid logarithms
of zero values.

k = kmaxngel_n3+ak7 (7)
k‘2
e = 0.36#67ﬁ3+a5, (8)

A trade-off must be made when choosing the values of the two constants : they must be large
enough to avoid any numerical problem originating from the logarithm function; they must
small enough so that the differences with the original manufactured solution is negligible
(including the manufactured eddy-viscosity field). Following these observations, we have
chosen [3] :

=107 ;. a.=10"3 (9)

The analytical solution for all variables is imposed on the inflow (as required by the work-

shop instructions) and upper boundaries as Dirichlet boundary conditions. On the outlet,
the normal and tangential forces on the boundary are imposed from the exact velocity and
pressure fields. The diffusion fluxes of k£ and € are also imposed from the manufactured solu-
tion. Hence, on the outlet Neumann boundary conditions are applied on all variables.
On the wall, the workshop instructions require to impose Dirichlet boundary conditions. Such
a setting is suited to perform Code Verification for turbulence models with low-Re formu-
lations. However, this is not adequate for a complete Code Verification procedure for our
computational framework. Indeed, we need to verify the wall-function implementation along
with the other typical boundary conditions used for addressing turbulent flows. Thus, we
consider a first case where manufactured wall-functions are used at the bottom boundary.
The type of boundary conditions is determined according to the wall functions :

e u : Robin boundary condition e k : Neumann boundary condition

e v : Dirichlet boundary condition e ¢ : Dirichlet boundary condition

As described in Refs. [24], source terms are added in the standard wall-functions boundary
conditions to ensure compatibility with the manufactured solution (i.e. all imposed BC val-
ues are determined from the manufactured solution variables). The wall distance is set to
d = 0.006 to ensure, for a Reynolds number of one million, that the non-dimensional wall
distance d* lies in [30,300] on all walls remaining as close as possible to 30 for improved
accuracy. This first setting allows for Code Verification of the complete solver for practical
turbulent flow problems.

However, we have not followed the workshop instructions for wall boundary conditions. Fur-
thermore, the verification procedure requires to examine local flow quantities at two near-wall
locations for which y < 0.006 (y = 0.001 and y = 0.002). Hence, they are located in the
gap between the physical wall (y = 0) and the computational wall (y = d) where solution



variables are not solved but defined according to the manufactured (ezact) wall functions.
Here, it means that the exact manufactured solution variables are used so that no error can
be reported at these locations. This merely is an artifact of the wall-function modeling.
To circumvent this limitation, we consider a second case for which manufactured Dirichlet
boundary conditions are used at the bottom boundary for all variables. Hence, equations are
integrated down to the physical wall (y = 0) following what is done when low-Re modeling
is used. Thus, wall functions are deactivated and not part of the verification exercise. We
will use this second case to report results on local flow quantities. We emphasize that the
manufactured eddy-viscosity are not exactly zero at the wall, as opposed to what is described
in Ref. [23], since we have added small constants aj, and a., to the manufactured turbulence

variables.

4.2 Numerical results
4.2.1 First Case : with wall functions

This first configuration allows for a complete Code Verification. We will report here observed
orders of accuracy on all variables as well as results on the friction resistance as it would be
the case for practical applications.

Eight grid adaptation cycles have been performed, the last adapted grid (# 8) contains
462,338 nodes. Figure 1 shows the grid # 6 which has 135,460 nodes (the last two grids
being too fine to be of any visual interest). It is typical of adapted meshes for boundary layer
flow problems as expected. Extensive refinement is observed in the near-wall region. Several
bands of refinement can also be identified which correspond to regions of rapid variation in

velocity, I, £ and py.
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Figure 1: 6 adapted mesh for the MS with wall functions

We first check that the non-dimensional wall distance yy lies in the interval of validity



imposed by the wall functions. We have chosen the distance d based on the manufactured
solution fields to enforce that y4 € [30,300] and remains close to 30. Note that since we use
a manufactured solution, this condition is not necessary as opposed to real flow problems.
Figure 2 shows the distribution of y; along the bottom boundary. As can be seen, the
condition is fulfilled as expected from our construction.
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Figure 2: Distribution of y4 along the bottom boundary

Figures 3 and 4 shows the evolution of the global error norms defined by Egs. (1) - (5)
(true and estimated) with the adaptive cycles. The corresponding efficiency indexes (ratio of
estimated error over the exact error, e.g. {miu = [|eu|[%:1/]|eul|5T) are presented in figure 5.
As can be seen, the errors decrease with mesh refinement and the numerical solution converges
towards the exact solution. Furthermore, the error estimates approach the true errors with
mesh refinement. This indicates that adaptation improves the accuracy of both the solution

and the error estimator. Table 1 gives the values of the global error norms along with their

Manufactured solution

10- T T T T T T N Ty
r True error : HIU —+—
1L Error estimate : HIU ---x--- ]
[ True error : H1IP ---*--- ]
L Error estimate : H1P &
0.1 True error : EVM ——=—
[ Error estimate : EVM --0--- ]
S 0.01 | -
= + b, SR g
(3]} | ] 1
Q =
5 0.001 | - 3
[e] Sizss
2 | . R T . ]
€ 0.0001 | ~a By
L ~ 4
- \'\~\ 4
le-05 S E
b ~._ ]
le-06 L __
F ~._ ]
L N
1e-07 MR | MR | MR | M T
100 1000 10000 100000 1e+06

number of nodes

Figure 3: Evolution of global error norms with adaptive cycles (1)

associated efficiency indexes computed on the last adapted mesh. As can be seen, all the
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Figure 4: Evolution of global error norms with adaptive cycles (2)
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Figure 5: Evolution of efficiency indexes with adaptive cycles

efficiency indexes are close to one indicating that the ZZ error estimator performs well.

Exact Estimated Efficiency index
H1U 4.854107* 4.2421074 0.874
HIP 1.211107% 9.966107° 0.823
EVK 2.656107% 2.6311073 0.990
EVE 5.57010* 4.97810~* 0.894
EVM 1.28410°7 1.3101077 1.021

As part of the Code Verification exercise, we now look at the observed orders of conver-

Table 1: Global error norms
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gence for the dependent variables. They are computed from the reductions of the true global
error norms between two consecutive meshes assuming that the asymptotic range is reached.
However, the use of the adaptive procedure leads to a difficulty in the evaluation of these
orders since the refinement ratio between two consecutive adaptive grids is generally not uni-
form over the computational domain especially during the first cycles. Uniform refinement
is only observed when the asymptotic range has been reached and the error equidistribution
has converged. It might be true for the last adaptive cycle (given that the adaptive grid #
7 already has more than 260,000 nodes) but certainly not for the previous ones. In order to
obtain a set of geometrically similar grids, we start from the finest adaptive grid (# 8) and
apply a refinement ratio of 1/2 to generate coarser grids. This is equivalent to a coarsening
by V2 in each direction so that the number of grid points is halved at each cycles of mesh
coarsening. This is easily done by our advancing front mesh generator but can not be en-
forced exactly everywhere for technical reasons. However, the refinement ratio between two
consecutive meshes is nearly constant over the domain.The observed rates of convergence
(computed from true error norms) for all variables are given in table 2. Without the stabi-
lization terms, the theoretical orders of accuracy of the standard Galerkin FEM should be 3
for all variables but the pressure for which the order should be 2. However, the stabilization
formulation locally introduces some amount of artificial numerical diffusion which degrades
the accuracy. The exact amount of diffusion introduced is problem dependent so that we can
only expect the observed orders to be between 1 and 3 (except for the pressure for which it
should be between 1 and 2). Indeed, it is impossible to foretell what is the amount of artifi-
cial diffusion arising from the stabilization formulation. The only established fact is that it
clearly depends on the Reynolds number. As can be seen in table 2, the convergence rates
for p, K and p; are close to their best theoretical counterparts (stabilization has almost no
effect on their observed orders of convergence). For the velocity variable, the observed order
of convergence is close to the lowest limit of its theoretical range. This means that the effect
of the stabilization terms is more pronounced on the velocity than on the other variables.
However, the stabilization terms also act on £ since its convergence rate is too large which
means that its error reduction with mesh refinement is too fast. Note that similar conclusions

u p K 3 Mt
grid 8/7 2.089 2.063 3.056 3.766 3.062

Table 2: Observed orders of convergence on solution variables

are drawn from the observed orders of convergence calculated using the last two adapted grids
so that the use of the uniformly coarsened grids was unnecessary. As to the Code Verification
exercise, this result on the £ rate of convergence is cumbersome since full Verification requires
that observed orders of convergence for all variables to converge to some limits inside their
theoretical ranges. However, the convergence of the efficiency indexes with mesh refinement
in fig. 1 leaves little room for any programming error in the flow solver. Indeed, even the
slightest error in the code would prevent such a clear-cut convergence behavior. Hence, we
are confident that this result for the £ variable is due to the stabilization formulation. The
upwinding it introduces somehow leads to an observed order of convergence higher that the
degree of the FE interpolation functions.

We now focus on the evaluation of the accuracy of the error estimation technique for an

integral engineering quantity : the friction resistance Cy on the bottom wall. Taking pUZ;Lyes
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as a reference force, the friction resistance is computed as follows :

1 1 ou Ov
Cr=—— ‘e dl = ———— — 4+ — | dI. 10
1= 02 Lref/wT e 02 Lref/pw(””t)(@fax) (10)

ref ref

When the near-wall behavior is determined from a low-Re formulation, integration is per-
formed down to the wall so that v; and % are zero at the bottom boundary (for a flat wall
aligned with the x-axis). Here, we report a friction coefficient calculated at the computational
bottom boundary where the wall-functions apply. Thus, the integrand in Eq. (10) can not be
reduced to the normal derivative of the streamwise velocity component times the molecular
viscosity. Recall also that the manufactured 14 is slightly affected by the additional aj and
. constants in the manufactured turbulence variables used to prevent logarithms of zero
values. Also, the friction resistance could have been calculated using the law of the wall
function. Figure 6 shows the evolution of the friction resistance with adaptive cycles. As
can be seen, a clear grid convergence of Cy is achieved by the adaptive strategy. Figure 7

Manufactured solution
0.0001 T T T

w—

O le-05

1606 Ll il
100 1000 10000 100000 1e+06

number of nodes

Figure 6: Evolution of Cy with adaptive cycles

shows the corresponding evolution of the true and Wiberg estimated errors. It confirms that
the error on the friction coefficient is reduced at each adaptive cycle. Furthermore, the error
estimates converges to the true error surprisingly well with its efficiency index close to one
for the last adapted cycles. This is in contrast with the results obtained during the second
workshop where error estimations on integral quantity was reported to provide only the order
of magnitude of the error but was unable to predict any significant digit. Note that the error
estimation procedure is unchanged but we used much finer grids that two years ago and the
bottom wall is located at the different position as explained previously. However, though
the efficiency index can be made as close to one as desired, we note that it converges from
the lower side. That is, similarly to the estimated error norms from the ZZ estimators, the
efficiency indexes are lower than one. This means that true errors are under-predicted which
makes the estimators non-conservative and further stresses the need for the application of a
safety factor to yield reliable uncertainty predictions.

Figure 8 shows the error bars for C'y with adaptive cycles as predicted by our uncertainty
estimate Upym given by Eq. (6). These error bars are compared with the true error bars.
As can be seen, the error bars from the uncertainty estimation procedure all overlap the
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true error bars. Also, the predictions gets closer and closer to the true error bars with mesh
refinement.

4.2.2 Second Case : without wall functions

This second configuration is used to report results on pointwise quantities as explained in
Section 4.1. Here, the bottom boundary is located at y = 0 and corresponds to the physical
flat wall so that Dirichlet boundary conditions are applied on all variables. Wall functions
are not used and thus not tested. Again, eight grid adaptation cycles have been performed,
the last adapted grid (# 8) contains 516,078 nodes. It is very similar to the one presented
above.

The accuracy of the error estimation technique for local flow quantities is now examined.
The coordinates of the three local points under consideration are : Point 1 (0.600,0.001),
Point 2 (0.750,0.002) and Point 3 (0.900,0.200). At these locations, we study the values of
the velocity components (u and v), the pressure coeflicient C),, the eddy-viscosity v, and their
associated errors. Note that here, the pressure coefficient is defined as :

p
C)=—%. 11
p pU2 ( )

ref

The results are collected in table 3. The quality and reliability of the error estimator on point-

Local point Variables Value Exact Error Estimated Error Efficiency index
u 0.7522411072  0.1021077 0.87910°8 0.861
) v 0.62653710~°  0.3261078 0.30510~8 0.936
C, 0.9614901072  0.248107° 0.420107° 1.694
v 0.7492951079  0.98310~14 0.96710~ 14 0.984
u 0.12035610~%  0.23110°7 0.31310°7 1.357
) v 0.16029910~%  0.1721077 0.10310°7 0.596
Cp 0.19172810~*  0.15610°8 0.745107° 0.477
v 0.20920210~% 0.35810~13 0.4501013 1.258
u 0.791275107%  0.23810°6 0.28310°6 1.189
5 v 0.77041510~%  0.19410°6 0.198106 1.020
C, 0.16149110~1  0.3981076 0.351107¢ 0.882
v 0.67600910~*  0.285107° 0.2121077 0.746

Table 3: Results for local flow quantities

wise quantities are similar to what was reported two years ago during the second workshop on
uncertainty analysis. Actually, this is exactly the same exercise using the same manufactured
solution and extracting local values at the same locations. The error estimate based on the
Wiberg solution reconstruction over an element predicts the order of magnitude of the exact
error for all variables but fails to provide any significant digit of the true error. All in all,
error predictions are better that two years ago because efficiency indexes are closer to one.
This is probably due to the fact that the final adapted mesh is much finer than the one used
during the second workshop. Again, the error estimations are clearly not always conservative
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and true errors are under-predicted in a number of cases.

Figures 9 to 11 shows the estimated and true error bars for those local quantities. As can
be seen, the adaptivity-based uncertainty estimation procedure performs well in providing
reliable error bars in more than 95% of the case. Actually, among the 81 values reported,
failure is only observed for the pressure coefficient calculated at the third location on grid #
6. As a general trend, the uncertainty predictions get sharper with respect to the true error
bars with the adaptive cycle but this is not always true.

4.3

Conclusions from the Code Verification exercise

The adaptive procedure driven by the ZZ error estimator has been verified. It has built
confidence that the adaptive process automatically yields grid-independent results so
that grid refinement studies can be performed with minimum user intervention.

Results from the grid refinement study all indicate successful Code Verification with
the exception of the observed order of convergence for e. We believe it originates from
the stabilization formulation which already affects the observed order of convergence
for the velocity. However, we have no complete proof supporting our conclusion.

The ZZ error estimator for global error norms has been demonstrated to be almost
asymptotically exact.

The Wiberg error estimator for quantities of engineering interest only provides the
order of magnitude of the error. This is not considered as a poor result given how
perform most of error estimators for pointwise quantities (for non-linear and non-elliptic
problems).

Both AAE error estimators usually under-predict the true errors. Hence, a safety
factor must be applied to convert any of them into 95% certainty error bars. We don’t
have sufficient empirical evidences from previous experiences to fix the factor value (we
usually only report error estimations from them).

The adaptivity-based uncertainty estimation procedure has been reliable in more than
95% of the cases examined during the Code Verification exercise. It corroborates pre-
vious experiences. However, the error predictions may be over-pessimistic though this
tendency seems to be less pronounced when sufficient adaptive cycles have been per-
formed.

In the light of these results, the next workshop activities will be performed using the
adaptive procedure driven by the ZZ error estimator to bring solution predictions while
uncertainty bars will be estimated from Eq. (6).
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Figure 12: Inlet profiles for the turbulence variables

5 Solution Verification for the Backward Facing Step problem

5.1 Test Case description

We now consider the ERCOFTAC C-30 test case : a backward facing step problem at
Re = 50,000. The boundary conditions along walls are prescribed using wall functions. At the
inlet, Dirichlet boundary conditions are applied and at the outlet we prescribed homogeneous
natural FE boundary conditions (Neumann). The inlet profiles for all variables are defined
using experimental data and mathematical treatments to ensure the continuity of both the
variables and their derivatives. The original inlet profiles for the turbulent variables are plot-
ted in figure 12. As stated, these profiles are constructed in a piecewise manner to obtain C!
continuous functions as required by most numerical techniques. However, the logarithms of
these C'! continuous functions are not C' continuous. This may lead to numerical difficulties
for our code. Hence, we sightly modified the inlet profiles. The background experimental
data are unchanged but the piecewise mathematical treatment for obtaining the profiles is
done so that our computational variables (the logarithms of the turbulent variables) are C!
continuous. The resulting inlet profiles obtained are plotted in figure 12. We believe that
these modifications will only have minor influences on the computed solution since the physic
behind them is the same than for the original profiles. Only, the mathematical assembly is
different.

5.2 Solution Verification

Thirteen grid adaptation cycles have been performed and the last adapted grids has 489,969
nodes. Similarly to the manufactured solution case, the two last meshes are so fine that it is
impossible to distinguish one node from the next when displayed in a figure. Thus, figure 13
shows the grid obtained after 11 adaptive cycles. It only contains 131,205 nodes but the main
regions of refinement chosen by the error estimates during adaptation can clearly be seen. A
close-up view around the step is also provided in figure 14. Similarly to other wall-bounded
flow meshes, grid refinement has been performed in the near-wall region of the top and bottom
walls. Also, intensive refinement has occurred around the upper corner of the step in the form
of two layers of refinement to capture the rapid variations of the flow in this area. This is
typical of adapted meshes for backward facing step flows. The adaptive procedure also has
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clustered grid points in two different bands that originate from the large curvatures in the
inlet profiles for k and € (see fig. 12). These large curvatures in the turbulence variables
intensify as they are convected further downstream so that grid cell sizes become smaller and
smaller as they get closer to the outlet. Such a pronounced refinement in these areas may
seem irrelevant and useless when one is only interested in computing engineering quantities
such as the friction or pressure coefficient on walls. However, it clearly illustrates that the
essence of adaptivity is to yield solutions with equal accuracy all over the computational
domain from the principle of error equidistribution. Such a property is responsible for the
general-purpose nature of an adaptive procedure that can thus be confidently applied to any
problem regardless of its own specificities.
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Figure 14: Inside view of the adapted mesh around the step

As part of the Solution Verification exercise, figure 15 shows the evolution of the global
error norms with adaptive cycles as predicted by the ZZ estimators. Table 4 gives the
observed orders of convergence on solution variables. Note that, as opposed to what has
been done for the manufactured problem, we here measure the pressure error in Lo norm.
As can be clearly seen, a grid-converged behavior is reached for all variables. Furthermore,
the observed orders of convergence are all in their expected theoretical range so that we
conclude the asymptotic range is reached for all variables (at least for such a global measure
of the error). This is in contrast with previous results for the manufactured solution case.
It is unclear to the authors why the observed behaviors of the convergence of the dependent
variables is closer to the theory here. It might be due to a much lower Reynolds number
for this case (Re = 510%) than for the manufactured problem (Re = 10°) so that the effects
of the SUPG stabilization formulation are milder. Note however that this conclusion may
not hold for pointwise quantities. That is, this behavior is here observed for global error
norms for which integration over the domain may provide an averaging process responsible
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Figure 15: Estimated error norm trajectories

u p K £ Mt
grid 13/12  2.800 1.953 2.820 3.049 3.101

Table 4: Observed orders of convergence on solution variables from error estimates

for smoothing the observed behaviors. This is the authors’ intuition based on heuristics and
we do mot pretend it can be stated as a general result. Finally, one may be surprised by
the initial error trajectories for the turbulent variables since these errors increase during the
early steps which violates the error reduction target in the adaptive procedure. This is due
to poor error estimations on these coarse grids for which the number of nodes is lower than
20, 000.

Before proceeding with any analysis of the results, we must check that the non-dimensional
wall distance chosen for each wall lies in the interval of validity imposed by the wall functions.
That is, it is required that y, is less than 300 and greater than 30 but preferably as close
to 30 as possible. Figure 16 gives the evolution of y, with adaptive cycles for each wall. As
can be seen, the wall distances converge with the adaptive cycles. And, for the last adapted
grid, the above condition is satisfied everywhere except near the corner singularity.

We now turn our attention to the quantities of interest for this workshop. We first
examine the result for the recirculation length. Figure 17 shows the evolution of the computed
recirculation length with adaptive cycles. As can be seen, grid convergence is clearly achieved.
The value of the non-dimensional recirculation length computed on the last adapted mesh is
5.4658759. The evaluation of the uncertainty from Eq. (6) is Upym (Lrec) = 0.0015D. Thus,
we report that Lyec/D = 5.4659 £ 0.0015.

We now examine several integral quantities : the friction resistance on the bottom wall
(Cy)p (fig. 18) and the top wall (Cf); (fig. 19) and the pressure resistance (Cp), on the bottom
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wall (fig. 20). There are defined as follows :

0 40H
€= Tatum [f_m T dz + [0 7,, da;} , (12)
40H
(Cr)e = 1/2Ur21f44H [ —ag Tw dl’} ; (13)
H
(Cp)b = m fo _(p - poutlet)’m:() dy7 (14)

where 7, is the skin friction. For the present geometry, given that the walls are aligned with
one of the Cartesian axes, one has :

~

ou  0Ov Ou
w=[(r-R)-t] = EY ~ Voy
T [(7' n) Lmzl [(V T Vt)(ay + &m)} wall [V 8y] wall

However, in our study, the skin friction is calculated from the wall function :
Tw = PUkUss.

Note that the wall function modeling assumes that the shear stress is constant in the wall
function region.

Finally, results for local flow quantities are presented. The coordinates of the three points
under consideration are : Point 1 (0.0,1.1), Point 2 (1.0,0.1) and Point 3 (4.0,0.1). At these
locations, we consider the mean velocity components (u and v), the pressure coefficient C),
and the eddy-viscosity v;. Figures 21, 22 and 23 report results for locations 1 to 3 in this
order. Note that here, following the workshop instruction, the pressure coefficient is defined
as :

_ P — Poutlet
P 1/2pU2,

All in all, those results bring the following conclusions :

1. All quantities exhibit grid convergence with adaptive cycles. Better and smoother grid
convergence is achieved for integral quantities than for pointwise quantities.

2. Most of pointwise quantities exhibit an oscillatory convergence. In such situations our
uncertainty estimation procedure is close to the CGI practices. Indeed, for any other
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behaviors than monotonic convergence, Richardson extrapolation can not be used. In
these situations, the CGI procedures use an alternative uncertainty quantification which
is the maximum difference between solutions on all grids at hand with application of a
factor of safety of 3.

In the vast majority of cases, the error bars for the medium grids #9 to #12 contain
the predicted finest grid solutions on the last adapted mesh.
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Figure 21: Error bars on local quantities (point 1)
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Figure 23: Error bars on local quantities (point 3)
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6 Validation exercise for the Backward Facing Step problem

This section reports results and conclusions from the Validation exercise. The required val-
idation procedure is adapted from the ASME/ANSI Standard document [25] which uses
internationally accepted concepts of uncertainty defined in Ref. [26]. The procedure has been
summed up in the workshop instruction for the convenience of participants and will not be
reproduced here. In what follows, we use the strong model concept that assumes fixed param-
eters meaning that their is no uncertainty in the problem parameters (Uinput = 0) (boundary
conditions, geometry representation, etc).

S Unum U; input D UD E Uval
5.46588 0.00153 0.0000 6.26 0.10 -0.79412 0.10001

Table 5: Validation exercise for the recirculation length

The results for the recirculation length are given in table 5. The agreement between the
numerical result and the experimental data is relatively poor so that the absolute value of the
validation comparison error F is large. Given that the numerical uncertainty predicted Upym
is very small, the validation uncertainty U, equals the experimental uncertainty Up. How-
ever, |E| >> Uy, so that the modeling error is of the order of the validation comparison error.
Hence, numerical simulations could be used to test changes in the model (RANSE + standard
k — € + wall functions) aiming at reducing the modeling error. Furthermore, these modeling
improvements are strongly needed. Indeed, |E| is large compared to S so that our model is
relatively poor. This was expected since the standard k — e turbulence model is widely known
to badly predict reattachment points. It gets worse in the presence of adverse pressure gra-
dients. This is one of the main limitations of the first-order k — e family of turbulence models.

We now apply the validation procedure to pressure and friction distributions along walls.
Figures 24, 25 and 26 present the results for the pressure coefficient along the bottom wall,
the pressure coefficient along the top wall and the friction coefficient along the bottom wall
respectively. In each case, figure (a) shows the comparison between the numerical predictions
and the experimental measurements with their associated uncertainty bars. Figure (b) shows
the distribution of the validation comparison error with the validation uncertainty as error
bars. As can be seen, the agreement between numerics and experiments is fairly good except
in the area directly downstream of the corner step. Again, the numerical uncertainty is ex-
tremely small compared to both the solution magnitude and the experimental uncertainty. As
a general trend, the numerical predictions are within the experimental uncertainties so that
the validation uncertainty error is mostly of the same order than the validation uncertainty.
Hence, the modeling error is within the noise level from all the other source of uncertain-
ties (here mainly the experimental uncertainty) so that modeling improvements would be
difficult. This trend is not closely observed in the region nearby the step where thus some
improvements may be potentially achieved.

Finally, we consider local flow quantities extracted along transversal cuts normal to the
walls. Figures 27, 28 and 29 show profiles extracted at z/H = 1 for the streamwise com-
ponent of the velocity, the normal component of the velocity and the Reynolds shear stress
respectively. Figures (a) and (b) present the same results as previously. Following this pre-
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sentation pattern, profiles are also extracted at x/H = 4 in figures 30 to 32, and at x/H = 6
in figures 33 to 35.

Generally speaking, the numerical predictions of the streamwise velocity component agree
well with the experiments. It looses accuracy in the near wall region of the recirculating zone
(this is due to the wall functions modeling). The level of shear stress from the turbulent
fluctuations is also fairly well approximated given that it is a quantity which is not easily
modeled. The poorest numerical predictions are observed for the y-component of the velocity
which is largely under-predicted even around the mid-line of the channel.

Interpretation of the validation results indicate that few improvements can be expected out-
side of the recirculation area except for the normal velocity component. In the recirculating
region however, |E| >> Uy,. Here, our model could be largely improved and numerical
simulations could help assessing if substantial improvements are achieved.

7 Concluding remarks

This paper has presented the results of the workshop activities which provided a complete
set of exercises with respect to Verification and Validation since Code Verification, Solution
Verification and Solution Validation were all included. The required exercises were performed
using an adaptive finite-element solver based on RANS equations, the standard k& — € model
of turbulence and a two-velocity scale wall functions. In our approach, adaptivity is driven
by the ZZ error estimator which provides error estimates measured in elemental error norms.
Aside from driving the adaptive procedure, it allows for the calculation of the observed order
of convergence in solution variables but can not yield pointwise error estimations. We have
shown how an Lo least-squares approach can provide such local error estimations. Further-
more, we have introduced an uncertainty prediction procedure which largely relies on the
grid adaptive procedure. This adaptivity-based uncertainty estimator brings error bars at
no extra cost since the adaptive procedure is already used to yield grid-independent solution
predictions.

Results from Code Verification by the MMS have shown that the flow solver, the adap-
tive procedure and the ZZ error estimator have all been verified in the context of turbulent
flows with wall functions. We also have taken advantage of the opportunity offered by the
availability of true errors to access error estimators and the uncertainty prediction proce-
dure. Estimated error norms from the ZZ estimator show almost asymptotic exactness. The
Wiberg estimator for pointwise error estimations only predicts the order of magnitude of
true errors. They usually both under-predict the true error and can not thus directly pro-
vide reliable error bars. However, the adaptivity-based uncertainty estimation procedure has
been shown to achieve the required 95% certainty level of conficence. It is thus on par with
the GCI procedures but demands no user-intervention or additional computational efforts.
Obviously, further testing on a statistically significant number of cases is needed to confirm
these favorable results given that the factor of safety is an ad-hoc choice based on limited
previous experiences and do not rely on solid theoretical ground.

Results from Solution Verification have shown that the adaptive procedure automatically
yield grid-converged numerical predictions in the asymptotic range (as long as enough com-
puter resources are available). Also, the error bars for the numerical predictions on the middle
grids in the adaptive process have been shown to contain the finest grid solution which is
another encouraging result for adaptivity-based uncertainty estimator.
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Results from the Validation exercises have shown that the main source of uncertainty in
the numerical predictions comes from the modeling error. The interpretation of the Validation
results has successfully highlighted which parts of the numerical predictions would clearly
benefit modeling improvements and whether or not these improvements are possible based
on CFD. Those results agree well with the well-known limitations of both the & — ¢ model
and the use of wall functions.
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Figure 24: Pressure coefficient along the bottom wall

002 T T T T
YR
.
-0.02 | i
-0.04 | i
-0.06 | i
-0.08 | i
exp. —+—
num. ® i
-0.1 I I I L 1 |
0 10 15 20 25 30 35

x/H

(a) D £ Up(exp.) and S =+ Upum(exp.)

0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005

-0.0005
-0.001

-0.0015

Figure 25: Pressure coefficient

40

exp. —+—

num. e

5 10 15 20 25 30 35
x/H

(a) D £ Up(exp.) and S =+ Unum(exp.)

40

-0.005

-0.015

-0.025

-0.035

0.015

40

0.01

0.005

-0.01

-0.02

-0.03

—

-0.04

5 10 15 20 25 30 35
x/H
(b) E+ Uyal

along the top wall

0.0008

0.0006

0.0004

0.0002

-0.0002

-0.0004

-0.0006

-0.0008

40

\\/\ |

5 0 5 10 15 20 25 30 35
x/H
(b) E £ Uval

Figure 26: Skin friction coefficient along the bottom wall
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