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Abstract 

 

 A brief review will be given of several recent developments in CFD that bear on 

Calculation Verification and more generally on Verification and Validation. Topics 

include the following. 

 

1. Effect of Incomplete Iteration Error on Accuracy and Calculation Verification 

2. V&V Committee Progress: AIAA, ASME CSM, ASME CFD, ASCE 

3. Journal Policy Statements on V&V 

4. An Invalid Approach to Verification and Validation 

5. Observed Grid Convergence Rate p Affected by Asymmetrical Grid Refinement 

6. Uncertainty Calculations for Large Eddy Simulation 

7. Grid Convergence Index for Unstructured Grids 

8. Singularity Treatment in Calculation Verification 

9. Non-Uniqueness in Turbulence Modeling 

10. New K-ω Turbulence Model 

11. Commercial Code Use 

12. Challenges to the Concept of Validation 

 

 

1. Effect of Incomplete Iteration Error on Accuracy and Calculation Verification 

  

 Eça and Hoekstra [1] recently presented a paper on the influence of the 

incomplete iteration error in the numerical uncertainty estimates in CFD. At the risk of 

embarrassing our hosts at Lisbon II, honesty compels me to state that I consider it a major 

contribution to a largely overlooked area. The paper continues the tradition of the authors 

for performing work notable for its thoroughness. The methodology of the study is well 

chosen; it takes the “machine accuracy” solution as the benchmark, analogous to the 

exact manufactured solution used here at Lisbon II in evaluations of uncertainty 

estimators. 

 The common approaches are hardly rational; the arbitrary and too lenient 10
-3
 

reduction in initial residuals (widely used and set as default in some commercial codes) 

on the one extreme, and on the other, machine zero, equally arbitrary but too strict. [1] 

quantifies a more rational result, a usable rule of thumb that iteration error 2-3 orders 

smaller than discretization error is safe. 
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 There are several results that will prove to be unpopular - another case of 

“inconvenient truth.” Iteration error estimators based upon the last performed iteration 

systematically underestimate the iterative error. This is serious, since this practice is the 

most common type of iteration criterion used. The L∞  norm is more dependable than L1 

or L2, which will make analyses difficult. And iterative convergence rate depends on the 

turbulence model, therefore iterative error estimates are model dependent. All these 

results belie the casualness of the 10
-3
 reduction in residual criterion commonly 

recommended as a rule of thumb. 

 

2. V&V Committee Progress: AIAA, ASME CSM, ASME CFD, ASCE 

 

 At least four current committees of professional societies are devoted to V&V 

issues. The AIAA has a standing committee on the AIAA Guide for V&V in CFD [2]. 

There is no publication forthcoming, but several of the members were recently successful 

in getting approval of an expanison of the earlier 1993 V&V publication policy [3] with a 

new one [4]. I had chaired the AIAA Fluid Dynamics Subcommittee that produced the 

first [3] but have been involved only as an outside commentator since. By contrast, I have 

first-hand experience on the other three committees. 

 The ASME Committee PTC-60 (recently re-designated V&V10) has completed 

its Guide for V&V in Computational Solid Mechanics which is now in the process of 

external reviews, with official publication expected in 2007 [5]. The project was inspired 

by the AIAA Guide on V&V in Fluid Dynamics [2] and like that publication, it is 

valuable for overview, definitions, philosophy, and motivation but it is not intended to 

provide detailed procedures. (One equation crept into the penultimate draft.) It is even 

broader and more management oriented than its AIAA predecessor. The committee 

intends to produce a procedural document in the future. I was unable to convince the 

committee to include distinctions between “model” in the strong and weak senses [6]. 

This lack causes some internal contradictions in a close reading. 

 The younger ASME Committee PTC-61 (recently re-designated V&V10) is 

working on its Guide for V&V in CFD [7], which might appear in 2007 but 2008 is more 

likely. Despite the similarity in title to [2] and [5], this document is targeted to 

engineering practice rather than management. It includes overview and definitions, but 

also is being constituted as a detailed guide to methodology. 

 A similar approach is being taken by the ASCE committee developing a 

monograph [8] on V&V for the more limited class of fluid dynamics problems of free 

surface problems. This project is more ambitious and noteworthy for including detailed 

case studies of both laboratory experiments and field studies. The field studies are both 

real and extensive, e.g. simulations of San Francisco Bay, Victoria Bend of the 

Mississippi River, and others. Clearly the document will be valuable if it is ever 

published. Unfortunately, the committee has hit a surprising impasse at a very late date. 

After ten years of work (my involvement has only covered eight years) the committee 

finds itself sharply divided on a few very fundamental issues. One of these is sure to 

surprise attendees at Lisbon II. Should Calculation Verification be performed before or 

after Calibration and Validation? (!) This audience can well imagine the tone of 

committee discussions. 

  



2
nd
 Workshop on CFD Uncertainty Analysis, Lisbon, October 2006 

 

3 

3. Journal Policy Statements on V&V 

 

 The expanded AIAA V&V publication policy [4] has already been mentioned. 

Another has been published in Clinical Biomechanics [9]. Although this policy confuses 

some V&V terminology, it is a significant contribution to setting quality standards for 

CSM (Computational Solid Mechanics) in difficult problems. For example, Validation is 

complicated by the aging of animal tissues during the experiments. 

 

4. An Invalid Approach to Verification and Validation 

 

 In November 2004 a Workshop on V&V was organized by the U.S. National 

Institute of Standards and Technology (NIST) at their offices. The Workshop was called 

[10, Ch. 1] to “advance the research on a framework of methodologies for the verification 

and validation (V&V) of computer models of complex engineering systems with or 

without experimental data.” (Emphasis added.) Also ostensibly requested was input from 

V&V practitioners (31 of the 50 participants were from outside NIST) on the NIST 

approach, notably to “assess and improve the resulting metrology-based approach to 

V&V” [11]. I did not attend, but my contacts within the non-NIST participants were 

critical of the manner in which the Workshop was conducted and of MV&V. Apparently 

the Workshop was a complete contrast to Lisbon I [12] in every way, e.g. stifled 

discussion, lack of experience, naiveté over definitions, lack of understanding of past and 

current work in the V&V community. Of course, Validation “with or without 

experimental data” is an oxymoron, so credibility was lost in the first sentence. 

 The basic approach and flaw of metrology-based V&V is to treat the results of 

simulations like one treats statistical variations in a production manufacturing run. 

MV&V would replace the inconvenience of experiments with a kind of democratic 

approach called a “consensus mean” in which the results of various simulations are 

weighted and combined with statistics to arrive at the benchmark values. One might hope 

that at least a 4th order solution on 10
7
 cells would be weighted more heavily than a 1st 

order solution on 10
2
 cells, rather than a pure democracy of “one code, one vote.” But the 

coarse grid, 1st order solution would be counted as part of the Validation replacement for 

experimental data. We in the V&V community must be clear and unequivocal: 

  No Experiments ⇒ No Validation 

 When it comes to systems, I am not a purist. I would be open to the possibility of 

considering a claim to Validation of a system based on Validation of components and 

their interactions. There will be doubts about unanticipated coupling, exceeding 

parameter ranges, etc. Many have made a good case for the more demanding claim that 

only full systems experiments should deserve the claim of "Validation." Likewise, I can 

defer to engineering judgment of experts in regard to interpolation and even extrapolation 

in the input parameter space, determining the limits of the “domain of Validation.” And 

of course the criteria for acceptable level of validation may necessarily be compromised 

by one’s inability to perform good experiments (e.g. limitations on weapons testing) or 

the impossibility of controlled experiments (e.g. true astrophysical experiments, climate 

modeling, etc.). Again, I have no problem with claiming "Validation" for weak 

agreements, provided that some quantitative correspondence exists (e.g. parameter 

trends) and that the coarse level of agreement has some engineering or scientific utility. 
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But the referent must be physical measurements, not simply an ensemble of un-validated 

computations. 

 The suggested MV&V approach also covers Calculation Verification, in the same 

democratic fashion. This approach is not just questionable; I believe that it can proven 

definitively to be wrong.  

 If MV&V for Calculation Verification works at all, it should work for the best-

behaved computational cases:  

(a) correct codes (i.e. no coding errors),  

(b) simple well-behaved linear problems (no singularities, no advection terms, e.g. a 

      Poisson problem with a smooth source term),  

(c) regular mesh generation (e.g. uniform quadrilaterals or triangles),  

(d) rigorous iterative convergence criteria or use of direct solvers with negligible round- 

      off accumulation, and  

(e) high enough resolution on all meshes used to provide monotonic mesh convergence 

      behavior (very easy to achieve for the example Poisson problem). 

 For these best-behaved cases, consider the MV&V approach of processing the 

results of N1 hypothetical codes on N2 meshes. The hypothetical N1 codes all use the 

same continuum equations, including boundary conditions, so there exists an 

unambiguous correct mathematical answer. The hypothetical codes cover a range of 

orders of formal accuracy; to be specific, let us consider orders of convergence 

(theoretical and observed) p = 2,4,6,8. Consider meshes starting from coarse resolution 

(say 10 elements in each direction, giving accuracy of ~20%) but still fine enough (for 

this simple, well-behaved problem) to be within the asymptotic range so that mesh 

convergence is monotonic. At the high end, we consider a very large number, say 10
4
 

elements in each direction. 

 The MV&V method will always give a mean solution that is worse than the best 

solution (finest mesh and highest order method), because it weights the best with the 

worst solutions (coarsest mesh and lowest order method). Furthermore, the variance of 

the solutions will always give error bars (i.e. mean ± δ) that are inside the extremes of the 

results; yet the true answer is in fact always outside the set of all results. This is because 

the convergence in these best-behaved cases is monotonic, i.e. the convergence is one-

sided, so the correct answer is approached asymptotically, and it will never be obtained 

by any interpolation or averaging of the individual computations. In fact, the best 

estimate is obtained by extrapolation, whereas the MV&V approach is always some kind 

of interpolation. 

 If we looked only at codes using 2nd order methods, and if the mesh resolution 

sampling were well covered, the MV&V estimate might loosely be expected to be close 

to the solution on a 10
3
 mesh, whereas the true answer lies beyond that of the 10

4
 mesh, 

and outside the error bars provided by the variance of the results. 

 If we looked at only one mesh, say the 10
2
 mesh, the MV&V estimate might 

loosely be expected to be close to the solution obtained by the p = 2 or 4 method, whereas 

the true answer lies beyond the p = 8 solution. However, for this situation the variance 

might provide a conservative error band (probably excessively conservative, based on our 

experiences).  

 Not surprisingly, the example MV&V exercise in [11] showed no significant 

mesh convergence tests (except for case CPS4). The essential point to bear in mind is that 
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all the (correct) codes will give the correct answer asymptotically as the mesh is refined. 

So why not do it? And why give any weight at all to the CPS4 solutions in 1×2×10 and 

1×4×20 meshes, when we have a 1×4×80 solution that must be better than the first two? 

(The information from the first two solutions can of course be well used to extrapolate to 

a better estimate and provide error estimates, but this is not considered in [11].) 

 Also, since all the (correct) codes will give the correct answer asymptotically as 

the mesh is refined, there is no need to run the case “in as many FEA codes as possible.”  

 In summary, the MV&V has nothing to do with Validation (experimental 

agreement) and demonstrably cannot correctly do the Verification. The basic choice of a 

"consensus mean" is incorrect. To continue the analogy used in [11] with experimental 

results from different laboratories, the MV&V approach would be like statistically 

analyzing 100 laboratory results for the speed of light, one of which was provided by the 

Stanford Physics Labs, one by CERN, and the other 98 by high school physics projects. 

 

5. Observed Grid Convergence Rate p Affected by Asymmetrical Grid Refinement 

 

 Eça and Hoekstra [13, and elsewhere] demonstrated thoroughly that lack of strict 

geometric similarity in the grid sequence is a major contributor to noisy values of 

observed rate of convergence p. It is obvious that geometric similarity requires the same 

grid refinement factor in each coordinate. A recent paper by Salas [14] investigates this 

effect in a systematic way, and discloses a widespread mistake associated with it. By 

citing error estimation results from workshops, he points out the prevalent current 

practice of using the power series form (suggested by the well-known Taylor series 

analysis for truncation error) for a 1-D problem  

 

  fe ~ fc + c h
p
           (1.2 of [14]) 

 

and using it in multidimensional problems. Users calculate a grid refinement factor r as 

the ratio of representative grid spacings defined as h = (hx hy)
1/2
 or possibly others, such 

as the diagonal h = (hx
2
 + hy

2
)
1/2
 .The form does not really matter, since the grid 

refinement ratio r scales out. However, as most of us recognize, that practice only makes 

sense if the same r applies in each coordinate. Otherwise, another coefficient is 

introduced for each coordinate, and it would require four grid solutions (rather than three) 

to determine observed p using the correct 2-D form,  

 

  fe ~ fc + a hx
p
 + b hy

p
          (1.4 of [14]) 

 

Salas claims there is widespread misunderstanding of this effect, and that current 

practices are flawed, particularly in external aerodynamics. 

 For precise language, let us refer to the observed p calculated using the 1-D form 

applied to a grid sequence with rx ≠ ry as observed pseudo-1-D p, denoted p1s. 

 Using an exact solution for transonic flow (the Ringleb solution) Salas 

demonstrates that his theoretically second-order code exhibits observed p = 2.2 when rx = 

ry , but exhibits an observed pseudo-1-D p1s = 9.94 when rx ≠ ry .  (See Eça and Hoekstra 

[13] for sometimes comparable anomalous results.) 
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 Salas includes a simple synthetic problem to illustrate his point. Upon 

examination, this problem raises another point that, I think, should be further 

investigated. It bears on the question of how one might use observed pseudo-1-D  p1s > p 

theoretical in uncertainty estimations. 

 As already stated, in order for the analysis for order of convergence p to apply in 

a multidimensional problem, the grid refinement ratio r must be the same in all 

directions, unless one solves for the coordinate coefficients separately. It is also true that 

convergence itself does not depend on this condition. At the risk of being too long-

winded, I arrange computational solutions on all possible 2-D (I×J) grids, starting with a 

2x2 cell grid, as follows. 

  

2,2   2,3   2,4   2,5   2,6   2,7   2,8   2,9 

3,2   3,3   3,4   3,5   3,6   3,7   3,8   3,9 

4,2   4,3   4,4   4,5   4,6   4,7   4,8   4,9 

5,2   5,3   5,4   5,5   5,6   5,7   5,8   5,9 

6,2   6,3   6,4   6,5   6,6   6,7   6,8   6,9 

7,2   7,3   7,4   7,5   7,6   7,7   7,8   7,9 

8,2   8,3   8,4   8,5   8,6   8,7   8,8   8,9 

9,2   9,3   9,4   9,5   9,6   9,7   9,8   9,9 ... 

 

The computational solutions fg (I,J) would form a (discrete) single-valued solution 

surface above this discrete 2-D domain of definition. The exact solution fe is approached 

down and to the right (but not just down, and not just to the right, which are only one-

coordinate refinements). The grid doubling sequence is underlined; it is not necessary to 

follow this path. The preferred paths are anything along the diagonal (italics), for which r 

is not necessarily constant in the sequence, but it is the same in each direction. But if we 

took another path down and to the right, e.g. the bold font path, we would still be 

heading towards the exact solution fe as (I,J) → (∞,∞). 

 The evaluation of an observed p enables us to extrapolate along the path, 

analogous to a directional derivative. (I suppose the analogy could be made precise by 

somehow generalizing the discrete surface to a continuum surface, but such precision 

seems unwarranted.) The extrapolated value can be used as a better estimate of the exact 

(converged) value fe  and so gives an error estimate. Any path along the diagonal 

corresponds to the same r in each direction. This diagonal direction does not uniquely 

determine the observed value of p because different values of r give different p. The grid 

doubling sequence gives a different value of the observed p than the unit sequence (2,2), 

(3,3), (4,4), (5,5), etc. {The latter would produce a better approximation of a secant 

evaluation of a directional derivative, if we were envisioning a continuum surface of 

solutions. But in actual calculations, it would contribute to noise in p because of 

incomplete iteration error and round-off error, especially as (I,J) → (∞,∞).} 

 The extrapolation slope is clearly path dependent, since the solution surface is not 

flat. Although any path along the diagonal corresponds to the same r in each direction, 

others are possible. If the observed p or the  p1s  is not real, presumably it cannot be used, 

and we are far outside the asymptotic region. But if it is real, can it be used? If we are 

following the bold font path, we clearly do not want to use theoretical p, even if it is 

correct for the diagonal path. We want to use the slope appropriate for our path.  
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 The question is: Will this extrapolation be accurate? Might it be that the 

somewhat arbitrary definition of h and therefore r, and the evaluation of a path-dependent 

p1s, produces an accurate extrapolation when used with a consistent evaluation of the 

coefficient c of Eq. (1.2)?   

 It would be of interest to try it for the exact (Ringleb) solution of [14], but 

solution values are not presented (only L1 errors in velocity). But when applied to the 

synthetic second-order accurate problem results given in Tables 1 and 2  of [14] it works 

very well indeed. (The following are results of Salas[14], not mine.) 

 The synthetic problem is devised with fe = 1, p = 2, a = 1, b = 5 in Eq. (1.4). 

Using the same r in both directions (rx = ry = 2.0 for the first refinement, = 1.5 for the 

second) reproduces the “true” (diagonal path) value of p = 2, along with c = 12.9 and the 

exact solution value fe = 1, as expected. If the same r is not used in each direction (rx = 

1.6 and ry = 2 for both refinements), the three grid solutions produce p1s  = 2.36 and c = 

34.75, very different from the diagonal path, as is to be expected; however, used 

consistently with Eq. (1.2) they produce fe = 0.999 ~ 1. Coincidence?  

 The conditions for use of p1s to estimate error remain to be determined. In a real 

problem with other contributors to noise, I would still be reluctant to base an uncertainty 

estimate on some observed p = 9.94, and the consensus at Lisbon I was to enforce an 

upper limit on p to avoid too-optimistic uncertainty calculations. My suggestion has been 

to limit p ~ theoretical, but perhaps this is unnecessarily conservative. 

 

6. Uncertainty Calculations for Large Eddy Simulation 

 

 Our fellow participant at Lisbon I, Prof. I. Celik, and his colleagues from 

Darmstadt have presented [15] several new approaches for calculation uncertainty 

(generally, assessment measures) for Large Eddy Simulations (LES). Along with other 

contributions, they notably make an effort to segregate numerical errors from modeling 

errors, which are often confused in LES and other simulations in which h is part of the 

model. Of special interest is an approach using 3 solutions on 2 grids. The “standard” 

(unperturbed) LES model is applied on two grids to estimate the purely numerical error 

using an assumed theoretical rate of numerical convergence. Then a modified (perturbed) 

LES model is used on the finer grid to estimate model error. The numerical and modeling 

errors are combined using absolute values to attain some conservatism, in the spirit of an 

uncertainty estimate. The paper is highly recommended for the presentation of the 

background as well as the new approaches. 

 

7. Grid Convergence Index for Unstructured Grids 

  

 I still wait for an unstructured grid, structured refinement application of the GCI, 

as suggested in [6]. Perhaps one will be presented here at Lisbon II. I would expect larger 

Fs to be required, since true grid similarity will be compromised. Perhaps Fs = 1.5? = 3? 

 

8. Singularity Treatment in Calculation Verification 

 

 In a paper on Finite Element Analysis (FEA) of Computational Solid Mechanics 

(CSM) stress problems, Sinclair et al. [16] presented a thorough work on the detection 
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and treatment of singularities during grid convergence studies. The work should be 

equally applicable to CFD, although it remains to be tested on CFD problems. The 

methods can automatically detect and distinguish between cases of power singularities, 

logarithmic singularities, or simply grids not yet in the asymptotic range. Of course, there 

is a gray area and account is taken of ambiguous results; the most difficult cases to 

distinguish are weak singularities (e.g. a terribly difficult behavior of Hertzian contact 

stress converging at ~ 0.1.)  

 Interestingly, the authors used the approach we all agreed upon for Lisbon II (also 

[17]), evaluating the performance of the singularity treatments by using realistic exact 

solutions (with prescribed singular behavior [17]) produced by MMS. However, their 

development was completely independent, and they refer to it as a Tuned Test Model 

(TTM) in an earlier paper with both CSM and FD examples [18]. (Like many of our CFD 

colleagues, the CSM audience often finds the MMS concept elusive [19].) The evaluation 

exercises are thorough, with 21 numerical experiments on 14 trial problems with power 

singularities, 21 on 5 problems with log singularities, and 103 on 18 problems with 

nonsingular stresses. Alternative methods from the previous literature are found to be 

lacking: the two-mesh check (i.e. no evaluation of observed p) and the “linearly-

increasing mesh sequence.”  

 {The latter uses a mesh sequence such as 100, 110, 120 total elements irrespective 

of the dimensionality, and convergence is judged (effectively extrapolating) by a log-log 

plot. However common it may be in FEA CSM, it has no basis in analysis. Nevertheless, 

I have seen it done in CFD by some notables in aerodynamics. The foolishness is easily 

demonstrated by a synthetic problem that diverges in 1-D, with computational solution f 

= C×(I-1) = C/∆x. This divergence would be evident in a plot of f vs. I. To disguise this 

divergence, extend the dimensionality to 3-D with no variation in y or z, and plot f vs. N 

= (I-1)(J-1)(K-1). The result will appear to be asymptotically approaching a converged 

solution with linear convergence rate. Go to 4-D for quadratic convergence.} 

 Rather than targeting our 95% certainty as in the GCI approach [6,12,13], Sinclair 

et al. adopt a less ambitious approach to evaluation of accuracy and prediction, aiming to 

achieve and predict (in the error estimation) one of the four accuracy levels: excellent or 

< 1% error in stress prediction, good or <5%, satisfactory or <10%, and unsatisfactory or 

≥ 10%. They evaluate the error estimate as an unambiguous success if the correct level is 

predicted, and acceptable if they miss by only one level, without worrying about being 

inside or outside error bars, which is the GCI approach. I am married to the GCI 

uncertainty approach, and it is becoming well established, but their approach is 

reasonable and in step with engineering practice "in the trenches." 

     

9. Non-Uniqueness in Turbulence Modeling 

 

 One can imagine how confusing evaluation of the GCI would be if the 

computational solutions were non-unique, dependent on extraneous factors such as initial 

conditions and iterative algorithms and paths. In two very interesting papers, Rumsey et 

al. [20,21] have shown this indeed is the case for some popular low-Re K-ε models. 

 The non-uniqueness problem is exposed with real CFD problems and elegantly 

described by a nullcline analysis. The result is of course exceedingly important to the 

diminishing group of K-ε users, being applicable to the most commonly used low-Re K-ε 
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models by Jones-Launder and Launder-Sharma (although not to the Chen model). It 

ought to drive the final nail in the coffin of low-Re K-ε models, but it probably will not. 

The fundamental failings of K-ε in regard to the incorrect limit behavior in the defect 

layer, and the resulting inaccuracy for transitional flows, for adverse pressure gradients 

flows and for compressible flows, is well documented (e.g. see Wilcox book [22]). Yet, 

as one expert told me, the K-ε approach remains “surprisingly resilient.” 

 The non-uniqueness is limited to some K-ε models, and the authors present an 

easy fix. Fortunately, the non-uniqueness phenomenon is not applicable to the more 

important and more accurate K-ω and Spalart-Allmaras models [22]. The K-ω simply 

does not allow pseudo-laminar regions. This is shown explicitly by the same authors [21] 

and for the “standard” K-ε, i.e. without the low-Re bludgeon of the sublayer. 

 It is unlikely that this non-uniqueness would have been discovered routinely 

during Code Verification by MMS. At most, the non-uniqueness could result in a false-

negative Code Verification, i.e. the coding is correct, but the code converged to a 

different solution than the one built into the MMS.  (I addressed this possibility in [6].) 

My guess is that in most cases, the source term would dominate and the Manufactured 

Solution would be attained with no non-uniqueness problem, demonstrating coding 

correctness but not revealing any non-uniqueness problems. Likewise for Calculation 

Verification; the error estimation from grid convergence tests would be polluted by the 

non-uniqueness but might escape attention. Even if it were not, the result obtained would 

be just the estimation of the discretization error, again not revealing anything about non-

uniqueness. [6, p. 263]. Further, I doubt that usual parameter sensitivity analysis would 

have disclosed the problem. Many codes set default initial conditions from the free-

stream boundary conditions, as done in [20,21]. If one is testing for solution sensitivity to 

boundary conditions, each run would have produced a plausible and apparently unique 

solution. Tests would not expose the problem unless one tested for the unexpected result 

of dependence on initial conditions independent of boundary conditions, which is not 

what people usually mean by parameter sensitivity testing. Note also that the non-unique 

results displayed in Rumsey et al. [20] (Fig. 3) result from a 4-order-of-magnitude 

variation in free stream turbulence ε (rate of energy dissipation). This is perhaps the 

reason that the non-uniqueness has not been experienced enough in practice to alert the 

CFD community earlier. 

 However, non-uniqueness is also disclosed by different mesh-sequencing in 

multigrid procedures, as shown in Fig. 6 of [20]. I find it incredible (literally) that none of 

the thousands of low-Re K-ε users have ever experienced this. Why has it not been 

reported before? However [20], “many CFD practitioners have noticed that the K-ε 

equations often fail to go fully turbulent.” I find it easier to excuse this oversight, because 

it might seem that the non-uniqueness here was mimicking a physically plausible non-

uniqueness (transition hysteresis) [6, p. 27]. They just did not pursue it far enough to 

discover, as Rumsey et al. did, that it is not like physical non-uniqueness; instead they 

pursued the heavy-handed fixes described in [20, p. 1588]. (Also, most studies fix 

boundary layer transition at the leading edge or at some small fixed percentage of chord 

distance from the leading edge, and start the K-ε calculations with turbulent flow, which 

disguises the problem.) 

 The analysis in Rumsey et al. also sheds light on the numerical fragility of K-ε. 

See the discussion on degenerate critical point [20, p. 1589]. Many practitioners have 
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experienced this, failing to achieve iterative convergence on some problems depending 

on initial conditions, even after resorting to severe damping. Again, the K-ω equations 

are more robust. 

 Even when the parameters are right and a stable turbulence solution is attained, 

the phase-plane trajectories (Fig. 9 of [20] and discussion following) are circuitous and 

intuitively (to me) non-physical. Again, this is a criticism specific to low-Re K-ε, not to 

other turbulence models or to computational physics in general. Compare the phase-plane 

trajectories in the second paper [21] of Figs. 4 and 5 for low-Re K-ε with the intuitively 

correct progression shown in Fig. 6 for K-ω. 

 

10. New K-ω Turbulence Model 

 

 Wilcox has re-visited his Standard K-ω turbulence model and made some 

embellishments that are simple to incorporate but significant in improving accuracy. He 

has revisited a suite of 100 problems and claims significant improvement in accuracy, 

and that all 100 are of acceptable engineering accuracy. Notable improvements are in the 

sensitivity to free-stream values of ω and more accurate (reduced) spreading rate for free 

shear layers. The results will be presented at the January 2007 AIAA Annual Meeting in 

Reno [23] and in the third edition of his book to be released in early 2007 [22]. This book 

also expands his examples of Calculation Verification using the GCI. 

 

11. Commercial Code Use and Comparisons 

 

 Hutton [24] cited estimates of the worldwide number of commercial CFD code 

users of 25-30,000, including 2/3 of the Fortune 500 companies, and licensing revenues 

growing at 15-20% annually. From a V&V viewpoint, this is intimidating. Industry 

colleagues tell me that the Code Verification exercises provided to users by vendors are 

not as convincing as we here at Lisbon II would like. With consolidation of commercial 

CFD vendors, the Code Verification quality is not likely to improve. All the more reason 

to do your own Calculation Verification using MMS (or to just become very trusting). 

 Hutton [24] also provided an example of a code comparison exercise on 

turbulence modeling. As is often the case, a wide range of results were obtained, even 

between groups using the same “code.” As expected, the difficulty was one with which 

we are all familiar: “code” ≠ “model”, and the problem specification was not complete 

because of unspecified radial velocity at inflow. Unlike our own exercises here and at 

Lisbon I, “very few” of the contributors performed grid convergence studies. He referred 

to one university group who “actually” refined the grid! This presented an excellent 

example of a K-ε calculation that agreed better with experiment for a coarse grid than a 

fine grid, not just with a single-valued solution functional (e.g. see [6]) but over a 

distribution. The systematic cancellation of discretization error and modeling error occurs 

because K-ε overproduces turbulent kinetic energy while under-resolution reduces it. 

This is yet another warning against rushing into Validation without first ascertaining grid 

convergence in Calculation Verification. With his experience, Hutton also affirmed the 

fact, widely acknowledged in the V&V community but always requiring reiteration, that 

old experimental data is generally inadequate for good Validation exercises. He presented 
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some examples of a Best Practices Guideline and a QA system for such code exercises, 

accessible at www.QNET-CFD-KB.com 

 

12. Challenges to the Concept of Validation 

 

 The challenges to the very concept of Validation of Models addressed in 

Appendix C of [6] continue, e.g. [25]. All relate to the science philosophy of Karl Popper 

[26] and to a rarefied view of Validation that (a) has nothing to do with practical 

engineering or science and (b) is contradictory with widely accepted and pragmatic 

definitions [2-9,12,24]. It is interesting that Popper is quoted to support the impossibility 

of Validation of codes and computer models, but his 1935 views, whatever value they 

may have, are much more general and would apply, for example, to “models” due to 

Newton or Einstein. I am writing on a modest paper [27] to present a down-to-earth 

rebuttal, not in order to change anyone’s mind, which would be highly unlikely, but to 

give a little support to anyone who needs to address and dismiss the issue (because of 

reviewers, funders, regulatory agencies, stakeholders, etc.) to be able to get on with their 

work. 
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