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ABSTRACT 
 

In this study numerical solutions are presented for a steady 
state, incompressible, 2-D turbulent flow near a wall and over a 
backward facing step. For the case of turbulent flow near a wall 
a manufactured (exact) solution was provided by the organizers 
of the 2006 Lisbon Workshop [6]. With the help of 
manufactured solution, the true error and other relevant 
uncertainty measures are analyzed. The calculations were 
performed using the commercial flow solver FLUENT along 
with some user defined functions to define source terms and 
boundary conditions. A detailed grid convergence analysis was 
performed using four grid calculations and grouping them in 
triplets of possible combinations. The limiting values of the 
variables solved as the grid size tends to zero were calculated 
using different extrapolation methods. Based on this various 
numerical uncertainty estimates are presented followed by a 
comparative assessment. 
 
1. INTRODUCTION 
 

Numerical solutions of partial differential equations always 
entail errors from different sources. Two major sources of 
errors are modeling assumptions and the numerical methods. 
Error resulting from the numerical methods, known as 
numerical error, has been the subject of many recent studies [1, 
2, 3, 4]. Various methods are available in literature to asses the 
numerical error in a given solution [1, 2, 3, 4]. However, since 
the exact solution is not known for a given problem it is very 
difficult to directly compare the performance of such methods 
in predicting the error itself. This problem was discussed during 
the Workshop on CFD Uncertainty Analysis in Lisbon, 2004. 
As a consequence, it was proposed to set up a manufactured 
solution that satisfies the continuity and momentum equations 
which can be used as an exact solution for error calculations. 
Such solutions are not obtained by analytically solving the 
governing equations but they are proposed solutions which 
satisfy the governing equations and exhibit the flow 
characteristics.  

The objective of this study is to evaluate the performance 
of several extrapolation methods along with various uncertainty 
estimation methods in assessing the numerical uncertainty 
using a manufactured analytical solution. Then a methodology 
to assess the uncertainty is recommended and applied to case of 
flow over a backward facing step. The manufactured solution 
used is provided by the organizers of 2006 Lisbon Workshop 

[6]. Though the flow regime is turbulent; the numerical solution 
is carried out for pseudo-laminar flow in the case of flow near a 
wall (known exact solution). This was done in order to avoid 
the errors implicit in turbulence models. The transformation 
from turbulent to laminar flow was done by defining a 
momentum source term which precludes the pressure gradient 
term. Commercial flow solver FLUENT is used for numerical 
simulations with various grid densities. Also these numerical 
simulations were performed with 1st and 2nd order schemes for 
the convective terms. User Defined Functions (UDFs) were 
used to prescribe the sources and boundary conditions specified 
in the problem. Once the manufactured solution is known 
evaluation of several methods for quantification of numerical 
uncertainty such as Extrapolated Relative Error (ERE), Grid 
Convergence Index (GCI) and EREcv2 [5] can be performed. 
Then it can be analyzed which of the methods used 
(combination of extrapolation and uncertainty quantification 
methods) better quantifies the numerical uncertainty 
 
2. MANUFACTURED SOLUTION (MS) 
 

The problem investigated in this study, has a manufactured 
solution which was provided by the organizers of the 2006 
Lisbon Workshop [6, 9], . This manufactured solution satisfies 
identically the continuity equation and the momentum equation 
in the turbulent regime for an incompressible flow over a 
stationary wall where the computational domain is a square and 
delimited by 0.5≤ x≤ 1 and 0≤ y≤ 0.5, where x and y are 
dimensionless quantities. 
The x-velocity component is given by 
 )(ηerfu =  (1) 
where the dimensionless variable η is given by 

 x
yση =

 (2) 
In Eq. (2) σ is a constant whose value used in this work is equal 
to 4.0. 
The y- velocity component is given as follows 
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While the pressure field is 
 ( ) ( )25.134ln25.02ln5.0 232

2 +−+−== yyxx
U
PC

ref
p ρ

 (4) 

Equations (1) to (4) represent dimensionless quantities but all 
the reference quantities were selected as unity. Therefore the 
dimensionless and dimensional quantities are equivalent.  
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3. MATHEMATICAL FORMULATIONS 
 
Case with Manufactured Solution (MS) 

The actual flow regime corresponds to a turbulent flow. 
However, as the principal objective of this work is to assess the 
numerical uncertainty, the error induced by the turbulence 
model was eliminated by modifying the equations as follows: 
The momentum equation in x direction is 
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where Sx=0 for laminar flow but for turbulent flow it is given by 
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Similarly the momentum equation in y direction  
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With the knowledge of the manufactured solution the source 
terms Sx and Sy can be calculated in terms of the flow variables 
u, v and p, giving 
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To check the pseudo-laminar model, the possible imbalance for 
the Navier-Stokes equations, was calculated for the 
manufactured solution in Eqs.(1-4) and resulted in the order of 
10-17 which is negligible. Thus, in order to make the flow 
pseudo-laminar, the source terms Sx and Sy, Eqs. (9&10), are 
implemented in x- and y- momentum equations in FLUENT 
using UDFs. 
 
Turbulence model for the Backward Facing Step (BFS) 
 As mentioned previously the flow regime for the BFS case 
is turbulent Re=5x104 with a reference velocity of 44.2 m/s. 
Here the Reynolds averaged Navier-Stokes (RANS) equations 
are solved along with a well known one equation Spalart-
Allmaras turbulence model. This model solves a transport 
equation for the modified turbulent kinematic viscosity. The 
modified turbulent kinematic viscosity and the turbulent 
kinematic viscosity are identical except in the viscous affected 
region (near to the wall). The transport equation for the 
turbulent viscosity is given by 
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where the relation between the turbulent  viscosity and modified 
kinematic viscosity is given by 
 1υρµ fvt =  (11b) 
In Eq. (11a) Gע and Yע are the production and destruction of 
turbulent viscosity respectively. The terms νσ  and Cb2 are 
constants. For more details see [10]. 
 The Spalart-Allmaras model was chosen to solve the flow 
over the BFS because it is a simple model and primarily 
because it was designed for applications involving wall-
bounded flows. 
 
4. NUMERICAL SETTINGS 
 
Manufactured Solution Case 

The computational domain for the MS is square 0.5≤ x≤ 1 
and 0≤ y≤ 0.5. Except for the south (bottom) boundary, the 
boundary conditions prescribed were the analytical velocity 
profiles expressed in terms of x and y components. This was 
accomplished by making use of UDFs to evaluate Eqs. (1&3) at 
the boundaries. The south boundary was set as a wall with the 
no-slip condition. 

To define the velocity profiles at appropriate boundaries, it 
is necessary to evaluate the error function in Eq. (1). The 
accurate evaluation of this function is critical to get good 
numerical results, particularly for the assessment of numerical 
uncertainty. In other words, the error induced by the evaluation 
of the error function must be as small as possible, in order to 
minimize its effect on predicted numerical uncertainty. At the 
beginning an equation with accuracy within 0.42 percent 
seemed to be good enough, however, it was not. Then a more 
accurate expression for evaluation was needed. The equation 
used is as follows 
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 284496736.02 −=a          421413741.13 =a  

 453152027.14 −=a          061405429.15 =a  (12) 
 

In order to assess the numerical uncertainty several cases 
were run. The studied cases differ from each other in their grid 
density. Two sets of cases were defined as shown in Table 1. 
An orderly grid refinement was done between each case for 
every set. In each set the average grid size was decreased by a 
factor of four. For the particular case of (20x20) the solution 
did not converge satisfactorily, therefore a (19x19) grid was 
used. The coarsest grid was selected such that it was amenable 
to evaluate the performance of the extrapolation methods. 

Case 1 of Set I corresponds to the coarsest grid and Case 4 
for Set II represents the finest grid. Further finer grids were not 
considered because the interpolation error (bilinear method) 
was in the same order of magnitude as the true error, in which 
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case the reliability in the assessment of the numerical 
uncertainty would be questionable. 
 

Table 1 Cases studied for uncertainty assessment (MS). 
Case Set I Set II 

1 10x10 15x15 
2 19x19 30x30 
3 40x40 60x60 
4 80x80 120x120 

 

 
Figure 1. Grid characteristics for finest grid (MS). 

 
 
The selected grids were structured, non-uniform with an 

expansion ratio of 0.95 in y-direction. The grid in y-direction is 
finer near the south boundary in order to predict, with 
reasonable accuracy, the velocity gradients inside the wall 
boundary layer. Along the x-direction the grid is uniform. A 
schematic view of the grid characteristics is shown in Fig. 1. 
The grid shown in this figure corresponds to the finest grid 
(Case 4, Set II). 

All the cases shown in Table 1 were run with 1st and 2nd 
order upwinding schemes for the convective terms. However 
for uncertainty calculations only cases for Set I were 
considered.  
 
Backward Facing Step (BFS) 
 In a similar way as in the manufactured solution case, use 
of UDFs to prescribe the boundary conditions were needed in 
the flow problem over the backward facing step. At the inlet of 
the backward facing step, profiles of x-velocity component and 
modified turbulent viscosity were prescribed. These inlet 
profiles were provided by the organizers of the 2006 Lisbon 
Workshop [6] as Fortran functions. At the outlet, pressure was 
set as atmospheric. The rest of the boundaries were treated as 
smooth walls (no roughness) with the no slip condition. The 
computational domain extends from -4H≤ X≤ 40H and 0≤ Y≤ 
9H, where H is the height of the step (1.27 cm) and also the 
reference length. The origin of the coordinate system is located 

at the lower corner of the step and the height of the inlet section 
is 8H as shown in Fig. 2.. 
 As mentioned before four grid calculations were utilized 
for uncertainty estimation. The grids used for the BFS consisted 
of 20774 cells for the finest grid (G1), 344 cells for the coarsest 
grid (G4). The medium grids have approximately 5146 cells 
(G2) and 1312 cells (G3). The refinement factor was 2 in both 
directions. The four grids were structured, uniform in x-
direction and non-uniform in y-direction. Similar to the 
refinement factor the expansion ratio was not constant, varying 
in the range from 0.7 to 1.0 from coarsest to finest grid in 
different subregions. The grid is finer near the walls and in the 
shear layer region as depicted in Fig. 2. 
 

 
Figure 2. Grid characteristics for grid G2 (BFS). 

 
 
5. METHODOLOGY FOR UNCERTAINTY ESTIMATION 
 

With three grids (triplets from four grid calculations), 
extrapolation to zero grid cell size was performed with cubic 
spline, power law and AES extrapolation methods [5]. The 
average extrapolated value for each method is calculated by 
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where n is the number of possible triplet combinations from the 
four grid calculations (sample size). The standard deviation is 
calculated according to  
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and the coefficient of variance in the extrapolated values (CVext) 
as 
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The extrapolated relative error (ERE) is used to quantify the 
uncertainty and it is evaluated by 
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and the extrapolated relative error considering the scatter in the 
extrapolated values defined as 
 extCV CVEREERE +=2  (17) 
One method to assess uncertainty is the fine grid convergence 
index (GCI) given by [7] 
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The term extφ  in Eqs. (16&17) has two meanings. It is 
interpreted as the extrapolated value from the finest triplet (G1, 
G2, G3) and as the average extrapolated value as given by Eq. 
(13). Then, the first set of estimated uncertainties is given by 
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and the second set calculated as 
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where m equals 2 because of the two meanings of the 
extrapolated value, l equals the number of extrapolation 
methods considered and k is the product of number of 
extrapolation methods (three) times number of uncertainty 
estimation methods (three or two.) Therefore the statistics 
calculations considered to estimate U1 and U2 were based on 18 
and 12 samples respectively. Finally, the uncertainties reported 
throughout this work are simply the average value of U1 and U2. 
 
6. RESULTS 
 

All the data presented in this work was obtained with first 
and second-order upwinding schemes (for convection) in the 
commercial flow solver FLUENT. The scheme applied to 
diffusion terms is second order central differencing. Double 
precision was used for all the calculations so that the round-off 
errors are minimized and thus can be considered negligible. 
The solution was considered a converged solution when scaled 
residuals were reduced to machine accuracy. The highest scaled 
residual for the MS case was in the order of 10-15 and for the 
BFS in the order of 10-10 for the second order scheme. 

 
Case with Manufactured Solution 

For all the cases shown in Table 1 the numerical solution 
was obtained and the true error was calculated using the 
manufactured solution. The manufactured solution contours are 
shown graphically in Fig. 3 along with the three flow variables. 
The velocity components, pressure and true error results for the 
finest grid case are shown in Figs. 4 and 5. Comparison of Fig. 
4 with Fig. 3 shows that the qualitative and quantitative 
behaviors are very similar. The quantitative similarity can be 
better assessed when the true error is calculated. Fig. 5 presents 
the true error for the three flow variables. It can be seen from 
Fig. 5 that the absolute true error for all the flow variables is in 

order of 10-3 in most of the computational domain, and the 
highest true error is present near the east boundary. 

In order to check the consistency of the numerical results, 
the calculated error at a single point is plotted against the non-
dimensional average grid size in Fig. 6. The average grid size is 
calculated as h= (A/Ncells)1/2

, where A represents the area of the 
computational domain and Ncells is the total number of cells in 
the domain. Hence, hmax corresponds to the average grid size 
for the coarsest grid. As can be seen in Fig. 6 the three flow 
variables show a convergence trend, meaning that for all the 
flow variables the true error is approaching zero as the grid size 
tends to zero. 

A detailed post-processing of the data obtained from all the 
numerical solutions was done in order to assess the numerical 
uncertainty and the performance of several extrapolation 
methods. The post-processing consisted of selecting four 
different locations along x-direction inside the calculation 
domain to study the error behavior at these locations. These 
locations coincided with the cell centers for the coarsest grid 
and hence the cell center values were directly used. For finer 
grids, however, these locations fell in between the cell centers. 
Bilinear interpolation method was used to interpolate the cell 
center values for such grids at the exact locations of the cell 
centers corresponding to the coarsest grid.  

Extrapolation to zero grid size was done making use of the 
power law method, polynomial method, cubic spline method 
and the Approximate Error Spline method (AES) proposed by 
Celik et al.[1].For a detailed description of these methods see 
[1]. The data required to calculate the extrapolated values of the 
flow variables was grouped in triplets for all possible 
combinations in each set of cases studied. The L2 norm was 
calculated for the four locations (profiles) considered inside the 
computational domain according to the relation  

 ( )
p

t

N
E

L ∑=
2

2
 (20) 

where Et represents the true error and Np the number of points 
on which the L2 norm is calculated. The order of magnitude of 
the L2 norm for both sets of groups is in the order of 10-4. The 
computed values are shown in Tables 2 and 3 for sets I and II 
respectively. 
  

Table 2. L2 norm of true error for Set I 
 u v p 
Power law 1.095E-03 3.550E-04 1.106E-04 
Cubic spline 6.319E-04 3.734E-04 1.163E-04 
Polynomial 6.983E-04 5.560E-04 1.282E-04 
AES 1.021E-03 2.732E-04 2.206E-04 

 
 

Table 3. L2 norm of true error for Set II 
 u v p 
Power law 5.059E-04 1.519E-04 1.378E-04 
Cubic spline 4.708E-04 1.289E-04 1.156E-04 
Polynomial 4.784E-04 2.195E-04 1.443E-04 
AES 8.413E-04 2.695E-04 3.983E-04 
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(a) 

 
(b) 

 
(c) 

Figure 3. Flow variables distribution from manufactured 
solution; (a) velocity in x-direction, (b) velocity in y-direction, 

and (c) pressure. 
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Figure 4 Numerical solution using FLUENT for the finest grid 
case; (a) x-velocity, (b) y-velocity, (c) pressure. 
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(a) 

 
(b) 

 
(c) 

Figure 5 True error for finest grid case; (a) x-velocity, (b) y-
velocity, (c) pressure. 

 
Figure 6 Grid convergence trends for the flow variables. Ф and 
Фnum represent the true and numerical value of the flow variable 

respectively. 
 

In Figs. 7 and 8 the normalized L2 norm is presented for set 
I and set II respectively. For the first set, the extrapolation 
method that performs the best is the cubic spline among the 
four methods tested. For Set II the power law and cubic spline 
methods are both good but the cubic spline method performs 
better than the power law method. Considering both sets at the 
same time, the cubic spline method is judged as the best 
extrapolation method of the four methods analyzed in this 
work. 
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Figure 7 Normalized uncertainty for triplet combinations 

between cases of set I in Table 1.  
 

Uncertainties of local flow quantities were estimated at 
three locations (x, y): (0.6, 0.001), (0.75, 0.002) and (0.9, 0.2). 
These uncertainties were calculated for first and second order 
schemes for u, v and Cp. The results are shown in Tables 4 & 5 
for first and second order schemes respectively. Comparing 
data from Tables 4 & 5, uncertainty for second order solutions 
are smaller except for the pressure coefficient. Estimated 
uncertainties for v-velocity at first and second point are high 
because of the small predicted value for that variable. This 
behavior is explained by Eqs. 15 through 18. As the exact 
solution is known, the true uncertainty can be calculated and 
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compared with the estimated uncertainties. This comparison is 
shown in Tables 6 and 7. From these tables it can be seen that 
the estimated uncertainties always over estimate the true 

uncertainty. The difference between 1st and 2nd order schemes is 
that the estimated uncertainty with second order is closer to the 
exact uncertainty than the first order.  

 
Table 4 Predicted and uncertainty values of local flow variables for first order scheme (MS) * 

Variable x=0.6,y=0.001 x=0.75,y=0.002 x=0.9, y=0.2 
u 5.8609E-3 7.5754E-3 7.9140E-1 
Uncertainty u (%) 25.07 (± 1.469E-3) 74.94 (± 5.677E-3) 0.09 (± 7.122E-4) 
v 1.2876E-5 2.0205E-5 7.7535E-2 
Uncertainty v (%) 963.73 (± 1.24E-4) 4290.86 (± 8.626E-4) 0.44 (± 3.411E-4) 
Cp 9.6480E-3 1.9294E-2 1.6763E-2 
Uncertainty Cp (%) 1.66 (± 1.601E-4) 1.03 (± 1.987E-4) 0.62 (± 1.039E-4) 

* Values in parentheses indicate the actual error in that variable. The same notation is used in all of the tables given below. 
 

Table 5 Predicted and uncertainty values of local flow variables for second order scheme (MS) 
Variable x=0.6,y=0.001 x=0.75,y=0.002 x=0.9, y=0.2 
u  7.5327E-3 1.2140E-2 7.9101E-1 
Uncertainty u (%) 2.23 (± 1.679E-3) 0.49 (± 5.948E-5) 0.03 (± 2.373E-4) 
v  7.2024E-6 1.7572E-5 7.7019E-2 
Uncertainty v (%) 445.4 (± 3.208E-5) 302 (± 5.306E-5) 0.08 (± 6.161E-5) 
Cp 9.3950E-3 1.8950E-2 1.5877E-2 
Uncertainty Cp (%) 2.17 (± 2.038E-4) 1.11 (± 2.103E-4) 1.42 (± 2.254E-4) 

 
Table 6 Comparison between exact (µ) and estimated uncertainties for 1st order scheme (MS) 

  x=0.6,  y=0.001 x=0.75,  y=0.002 x=0.9,  y=0.2 
  µ estimated µ estimated µ estimated 

u (%) 22.09 25.07 37.06 74.94 0.02 0.09 
v (%) 105.40 963.73 25.91 4290.86 0.64 0.44 

Cp (%) 0.34 1.66 0.63 1.03 3.80 0.62 
 

Table 7 Comparison between exact (µ) and estimated uncertainties for 2nd order scheme (MS) 
  x=0.6,  y=0.001 x=0.75,  y=0.002 x=0.9,  y=0.2 
  µ estimated µ estimated µ estimated 

u (%) 0.14 2.23 0.87 0.49 0.03 0.03 
v (%) 14.90 445.48 9.50 302.00 0.03 0.08 

Cp (%) 2.29 2.17 1.16 1.11 1.68 1.42 
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Figure 8 Normalized uncertainty for triplet combinations 

between cases of set II in Table 1. 

The uncertainty for friction resistance coefficient at bottom 
wall is reported in Table 8. As expected the uncertainty for 
second order solution is much smaller than that for the first 
order. 

 
Table 8 Predicted and uncertainty values of friction 

 resistance coefficient at bottom wall. 
 Predicted Uncertainty (%) 
First order 2.2999E-06 35.45 (± 8.153E-7) 
Second order 3.2463E-06 1.46 (± 4.7396-8) 

 
For the calculation of the overall friction resistance coefficient 
(integral quantities) the trapezoidal rule was the selected 
integration method. 

The iteration error for all these calculations is estimated to 
be negligible as shown in Fig. 9, since the converged value 
practically is not changing at all after 80 iterations. When the 
iterative relative error is calculated it is in the order of 10-16. 
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Figure 9 Behavior of x-velocity component as function 

of the iteration number. 
 
In the results shown in Fig. 9 there is no interpolation error 

since the data correspond to the cell center of the nearby point 
to x=0.6, y=0.001 for a 1st order upwind. This corresponds to 
Case 4 Set I described in Table 1. 

On the other hand, the interpolation error is always present 
and it could be eliminated only if the grid were manipulated in 
such a way that the reported points for every grid are located at 
the cell center.  

 
Backward Facing Step 
Uncertainty calculations for the backward facing step were 
focused at three points of interest. The locations of these points 
are (x, y): (0, 1.1H), (H, 0.1H) and, (4H, 0.1H). Uncertainties 
were estimated on both velocity components, pressure 
coefficient, modified turbulent viscosity, re-attachment point, 
friction resistance coefficient at bottom and top walls and, 
pressure resistance coefficient at bottom wall. All these 
calculations were performed for 1st and 2nd order numerical 
solutions for the convective terms. In Tables 9 & 10 are 
presented the uncertainties for local flow variables with first 
and second order schemes respectively. Comparing Table 9 and 
10 it can be seen that almost all of the cases shown the 
uncertainties for second order simulations are smaller than 
those for the first order scheme. These are expected results. 
Unfortunately, without knowledge of the true solution we are 
not in the position to establish which of these methods would 
yield better results. However, from results obtained for the case 
with MS it would be expected that uncertainties estimated from 
first order scheme be more conservative. Such a conclusion 
requires more flow problems with a manufactured solution to 
be tested in order to be accepted and demonstrated as a valid 
statement. 
 

 
Table 9 Predicted and uncertainty values of local flow variables for 1st order scheme (BFS) 

Variable x=0,y=1.1H x=H,y=0.1H x=4H,y=0.1H 
u 0.69837 -0.2193704 -0.06803701 
Uncertainty u (%) 2.93 (± 2.0462E-2) 4.46 (± 9.7839E-3) 54.34 (± 3.69713E-2) 
v -0.00047 0.0136924 -0.01170795 
Uncertainty v (%) 709.49 (± 3.3346E-3) 5.29 (± 7.2432E-4) 4.83 (± 5.6549E-4) 
Cp -0.197410979 -0.2559408 -0.06681666 
Uncertainty Cp (%) 2.091 (± 4.12786E-3) 9.73 (± 2.4903E-2) 24.2 (± 1.61696E-2) 

tν  1.497384E-3 1.3771E-3 2.20131E-3 

Uncertainty tν  (%) 124.38 (± 1.86244E-3) 9.87 (± 1.359E-4) 4.07 (± 8.95933e-5) 

 
Table 10 Predicted and uncertainty values of local flow variables for 2nd order scheme (BFS) 

Variable x=0,y=1.1H x=H,y=0.1H x=4H,y=0.1H 
u  0.700446 -0.1966764 -0.1107796 
Uncertainty u (%) 2.41 (± 1.688E-02) 0.47 (± 9.2437E-04) 9.48 (± 1.0502E-02) 
v  -0.00773 0.0223564 -0.0114692 
Uncertainty v (%) 46.68 (± 3.608E-03) 31.61 (±7.0668E-03) 4.21 (± 4.8285E-04) 
Cp -0.19925 -0.2333627 -0.0918282 
Uncertainty Cp (%) 2.02 (± 4.02485E-03) 2.45 (± 5.7173E-03) 2.7 (± 2.4793E-03) 

tν  1.43E-3 1.2094E-3 2.2154E-3 

Uncertainty tν  (%) 17.35 (± 2.481E-04) 15.37 (± 1.8588E-04) 0.43 (± 9.52622E-06) 

 
Table 11 Predicted and uncertainty values in resistance coefficients at walls for 1st order 

Flow quantity Predicted Uncertainty (%) 
Friction resistance bottom wall 2.1805E-02 7.98 (± 1.74E-03) 
Friction resistance top wall 3.3164E-02 41.28 (± 1.369E-02) 
Pressure resistance bottom wall 1.1080E-01 6.27 (± 6.947E-03) 
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Table 12 Predicted and uncertainty values in resistance coefficients at walls for 2nd order 

Flow quantity Predicted Uncertainty (%) 
Friction resistance bottom wall 2.2008E-02 7.32 (± 1.6109E-03) 
Friction resistance top wall 3.2922E-02 39.56 (± 1.303E-02) 
Pressure resistance bottom wall 1.0413E-01 2.4 (± 2.499E-03) 

 
 
 

Similarly as in some local flow variables, the uncertainties 
for the integrated variables such as friction resistance 
coefficient and pressure resistance coefficient at walls are 
smaller for second order upwind solutions than those for the 
first order (see Tables 11 & 12). Different to the MS case, the 
numerical integration method used to calculate these 
coefficients was the midpoint rule.  

Completely similar to the trends mentioned above, the 
uncertainty of the re-attachment point decreases fast from first 
order calculations to second order solutions as shown in Table 
13. Two methods to estimate the re-attachment point were 
performed; namely first by detecting the location where the 
axial velocity at the first grid cell center is zero, second by 
locating the point at which the wall shear stress is zero. Both 
methods predicted practically the same value of the re-
attachment point. The reported values were calculated with the 
first method. The cubic spline interpolation method was used to 
estimate the re-attachment point. 

 
Table 13 Predicted and uncertainty values for  

the re-attachment point 
 Predicted Uncertainty (%) 
First order 5.51486 10.04 % (± 0.55369) 
Second order 5.95309 2.77 % (± 0.1649) 

 
All the reported values throughout this work are dimensionless 
quantities. For more detailed information on the uncertainty 
calculations for the Manufactured Solution and the Backward 
Facing Step flow problems see [8]. 
 
7. CONCLUSIONS 

The use of manufactured solutions, could be a very useful 
technique to assess the numerical uncertainty. However, it is 
desirable that the manufactured solution be expressed in terms 
of functions that can be evaluated in a simple way. In case this 
is not feasible, care must be taken during the evaluation of 
complex function to guarantee a meaningful numerical error 
evaluation. 

The pseudo-laminar method proposed in this work is a new 
alternative to avoid complexities and resulting induced errors 
inherent to turbulence models. Unfortunately, this methodology 
is only suited when a manufactured solution is known. 

In case of iterative solutions, iterations must be continued 
till the scaled residuals reduce to machine accuracy if possible. 
If this can not be accomplished iterative error must be 
estimated and check a position to make sure that incomplete 
iterations are not a significant source of error. This is the case 
in this work where the highest residuals are in the order of 10-10 
for the second order backward facing step case. 

Special attention is required to the interpolation method 
and the interpolation error. When the interpolation error is in 
the same order of magnitude as the true error, finer grids will 
not be representative of the true error since the interpolation 
error is comparable with the true error. Ideally, it would be 
desirable to use a higher order interpolation method compared 
to the discretization method being used. 

Of the four extrapolation methods evaluated in this study, 
the extrapolation method that performs the best is the cubic 
spline method, however the AES method would be the 
recommended extrapolation method to be used when the 
particular application is critical and a conservative safety factor 
is desirable. 

It is recommended to use U1 (Eqn. 19, average of the 
samples containing AES, cubic spline and polynomial 
extrapolation methods along with ERE, ERECV2, GCI) when the 
estimates are required to be conservative and, to use U2 (Eqn. 
20) for less conservative calculations. Also for best practice (as 
reported in this study) it is suggested to use the average of U1 
and U2. 

In order to make a statement about the use of the 
methodology presented throughout this work, it is necessary to 
gain confidence on the uncertainty estimation. The only way to 
achieve that goal is by exercising on many more fluid flow 
problems with carefully designed manufactured solutions. 
 
NOMENCLATURE 
 
A computational domain area 
Cp pressure coefficient 
h average grid cell size 
H step height 
Ncells number of cells in the computational domain 
p pressure 
Sx momentum source term in x direction 
Sy momentum source term in y direction 
u x-velocity component 
Uref velocity reference 
v y-velocity component 
 
Greek symbols 
Ф flow variable 
Фext extrapolated flow variable 
Фf flow variable for the finest grid 
ν  modified turbulent viscosity 
µ viscosity 
µt turbulent viscosity 
ρ density 
σ standard deviation 
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