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I  INTRODUCTION 

In recent years, Computational Fluid Dynamics (CFD) has become a powerful tool for flow field 

analysis and is extensively applied to practical engineering problems such as the design of a ship hull 

form or other devices with complicated geometry. In order to promote its further development with 

well-established reliability, it is widely accepted that considerable efforts should be made for evaluating 

the accuracy of the CFD analysis. In general, CFD results of a specific problem depend much on the 

quality and size of the grid used. Therefore, the convergence behavior with qualified grids should be 

examined through successive grid refinement. Furthermore, the necessity of the numerical uncertainty 

estimation for the problem with exact solutions available has been strongly claimed as in the last 

workshop.  

This paper reports the numerical uncertainty estimation of the two test case problems for the 

two-dimensional, steady, incompressible, turbulent flows: 1) the manufactured solution in a square 

domain recently proposed by Eça et al. [1], and 2) the turbulent flow over a backward facing step 

(ERCOFTAC Database, Case-30). The flow solver employed is the Navier-Stokes solver SURF, which 

is being developed toward a practical ship design tool at the National Maritime Research Institute 

(NMRI). The uncertainty estimation procedure proposed by Eça and Hoekstra [2, 3], which is based on 

the concept of Grid Convergence Index (GCI) proposed by Roache [4], is employed for the present 

analysis on both problems. The specific objectives of the present study are to investigate the grid 

convergence behavior and to verify and characterize the SURF solver.  

The paper is organized as follows. In Sec. II, the numerical method of the present solver is outlined. 

The computational conditions including the boundary conditions and the uncertainty estimation 

procedure presently employed are described in Sec. III, followed by the results of the present analysis in 

Sec. IV. This paper is concluded in Sec. V. 

 

 

II  NUMERICAL METHOD 

The SURF (Solution algorithm for Unstructured RaNS with FVM) solver is employed in this study. The 

governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations for 

incompressible flows. The coupling of the velocity and pressure fields is implemented with the 

artificial-compressibility concept proposed by Chorin [6]. The equations nondimensionalized by the 

reference density ρ0, velocity U0 and length L0 can be expressed in a vector form as follows: 



2
nd
 Workshop on CFD Uncertainty Analysis, Lisbon, October 2006 

 

 

2 

2 

 
( ) ( ) ( )

0=
∂

−∂
+

∂

−∂
+

∂

−∂
+

∂

∂

zyxt

vvv ggffeeq
, (1) 

where the flow variables are denoted by  

 [ ]Twvup=q  (2) 

with the pressure p and the velocity components u, v and w in the x-, y- and z- directions, respectively. 

The inviscid fluxes e, f and g are defined as: 
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with β being a parameter for artificial compressibility. The viscous fluxes ev, fv and gv are given by 
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where 
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The Reynolds number Re is defined as ν00LU  with the kinematic viscosity ν. The 

nondimensional kinematic eddy viscosity νt is determined by a turbulence closure model. In the present 

study, the original Spalart-Allmaras (SA) one-equation model [7] is employed. The transport equation 

for the working variable ν~  is written as follows: 
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where ν~  is related to the eddy viscosity tν  as 
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In Eqs. (6-9), d and ωωωω  denote the distance to the closest wall and the magnitude of the vorticity. 

The right-hand side terms of Eq. (6) represent the turbulent eddy viscosity production, diffusion, and 

near-wall destruction terms, respectively. The model constants are set equal to those of the original 

paper [7]. 

    Spatial discretization is based on a cell-centered finite-volume method. A computational domain is 

divided into unstructured polyhedral cells, in which all the flow variables are stored. In the SURF solver, 

the cell shape can be arbitrary, i.e., hexahedra, tetrahedra, prisms or pyramids, but only the hexahedral 

cells are used for generating orthogonal grids in the present study. 

The inviscid fluxes are evaluated by an upwind scheme based on the flux-difference splitting of Roe 

[8], and the second-order accuracy is achieved in the momentum equation by the MUSCL scheme [9]. 

The viscous fluxes are discretized by the second-order centered differencing method. For the time 

integration, the backward Euler scheme is employed. More details of the above procedure are available 

in Ref. [5]. 

 

 

III  COMPUTATIONAL CONDITIONS 

Problem Setting and Boundary Conditions 

In order to simulate the turbulent flows for each test case problem, the following conditions are assumed 

in the present study.  

A. Manufactured solution 

The computational domain is defined by 15.0 ≤≤ x  and 5.00 ≤≤ y . The Reynolds number is set to 

10
6
, and thus the nondimensional kinematic viscosity is 10

-6
. The boundary conditions presently 

employed are summarized in Table 1. The subscript ms denotes the quantity of manufactured solutions. 

The Dirichlet boundary conditions are employed for the velocity and eddy-viscosity field at the wall 

( 0=y ) and the inlet ( 5.0=x ). The Neumann boundary conditions are employed using exact solutions. 

For solving manufactured solutions, the source terms provided are added to the momentum equation (Eq. 

(1)) and the transport equation of ν~  (Eq. (6)). The following cases are considered independently in the 

present analysis. 

 

Table 1.  Boundary conditions for the manufactured solution. 

     

 

A-1. Simulation of the velocity and pressure fields with fixed eddy-viscosity (MS1 & MS2) 

For these conditions, only the momentum equations coupled with the continuity equation are solved to 

determine the velocity and pressure fields. The turbulent eddy-viscosity is prescribed using the 

manufactured solutions for the SA model. In Cases V(MS1) and V(MS2), the eddy-viscosity profile is 

given by MS1 and MS2, which are 1st (MS1) and 2nd (MS2) order manufactured solutions, 

respectively.  

p ( )tvu νφ  , , =

( )0 =yWall

( )5.0 =xInlet

( )1 =xOutlet

( )5.0 =yTop

0=φ
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A-2. Simulation of the full flow field (MS1) 

The complete flow field is computed with SA, by using the MS1 profile of the eddy-viscosity as the 

boundary condition. This case is referred to as VT(MS1) for the results shown later. 

 

B. Backward facing step 

The Reynolds number based on the reference velocity and the reference length (the step height) is set to 
4105× . At the inlet boundary, the Dirichlet conditions are imposed on the velocity and eddy-viscosity 

field, which are set to the prescribed inlet profiles provided. The Neumann boundary condition is 

employed for the pressure. At the outlet boundary, the Neumann condition is imposed on u, v and νt, 

while p is set to zero. The non-slip condition is imposed on the walls. 

 

Table 2. Boundary conditions for the backward facing step. 

     

 

Uncertainty Estimation Procedure 

The uncertainty estimation procedure proposed by Eça and Hoekstra [2, 3] is applied to all the test cases 

presented here. The estimation of the uncertainty U of the solution on a given grid is based on the Grid 

Convergence Index (GCI) method, i.e., 

 REsFU δ= , (10) 

where Fs and δRE respectively denote a safety factor and the discretization error. The Richardson 

extrapolation is used to obtain the error as 

 
p
ioiRE hαφφδ =−= , (11) 

where iφ , oφ , ih , α and p represent the numerical solution on a given grid denoted by subscript i, the 

estimated exact solution, the representative grid cell size, a constant for the extrapolation, and the 

observed order of accuracy, respectively. The three unknowns, i.e., oφ , α and p, are obtained by a least 

squares root approach. For 5.0≤p  or 2>p , the error estimation is replaced by the following 

definition with fixed exponents:  

 3
3

2
22 iioiRE hh ααφφδ +=−= . (12) 

In order to neglect the iterative uncertainty, all calculations were continued until the residual of all 

variables reduce to machine zero. 

 

 

p ( )tvu νφ  , , =

Wall

( )hx 4 −=Inlet

( )hx 40 =Outlet

0=φ

inφφ =0=∂∂ np

0=∂∂ nφ0=p

0=∂∂ np



2
nd
 Workshop on CFD Uncertainty Analysis, Lisbon, October 2006 

 

 

5 

5 

y+

y+max

min

x+

 

Fig. 1  Grid for manufactured solutions. 

 
 

IV  RESULTS AND DISCUSSION 

A. Manufactured solution 

1) Grid Description 

Structured, orthogonal grids are prepared for manufactured solutions as shown in Fig. 1. Uniform grids 

are generated in the x-direction, while nonuniform grids with a hyperbolic tangent distribution are 

employed in the y-direction for denser meshes near the bottom wall. The number of grid points and the 

grid spacing in wall units are given as Table 3. For the geometrical similarity, the stretching parameter of 

the hyperbolic tangent function is kept constant for all grids. 

 

2) Uncertainty Analysis 

Figure 2 shows the convergence behavior of the friction resistance at the bottom under each condition. It 

is seen that, in Cases V(MS1) and VT(MS1), the results for the coarsest grid (GMS6) are apparently out 

of the asymptotic region. Therefore, the uncertainty is estimated using GMS1-5 throughout the present 

calculation, although the number of the data points for the Richardson extrapolation may not be enough 

for rigorous precision. The error of the calculated values with the finest grid from the exact solution is 

1.18%, 21.1% and 21.9% for Cases V(MS2), V(MS1) and VT(MS1), respectively. The convergence 

behavior of each profile is as reasonable as expected from the formal order of accuracy of the present 

solver. 

 

 
Fig. 2  Convergence of the friction resistance at the bottom wall. 

33.460.6825.0412161

25.100.5118.7816181

20.080.4015.02201101

16.730.3412.52241121

14.340.2910.73281141

12.550.259.39321161

×

×
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×

×

× +++

GMS6

GMS5

GMS4

GMS3

GMS2

GMS1

yyxNN maxminyx ∆∆∆∆∆∆∆∆∆∆∆∆

Table 3.  Number of grid points with the grid spacing in 

each direction for manufactured solutions. 



2
nd
 Workshop on CFD Uncertainty Analysis, Lisbon, October 2006 

 

 

6 

6 

 

 

 
 

Fig. 3  Convergence of the local flow quantities at the three prescribed locations: (a) x = 0.6, y = 0.001, 

(b) x = 0.75, y = 0.002, (c) x = 0.9, y = 0.2. 
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Fig. 3  (Cont.) 

 

Table 4.  Numerical error of calculated values from exact solutions. 

 

 

    Figure 3 shows the convergence behavior of the local flow quantities at the three prescribed 

locations. In Case V(MS2), all profiles are considered to be in the asymptotic range and exhibit 

favorable convergence behavior. On the other hand, in Cases V(MS1) and VT(MS1), the profiles of the 

velocity components exhibit unexpected behavior especially in the vicinity of the wall as shown in Figs. 

3a and 3b. 

It is noted that, in Fig. 3, large p (> 2) or small p (~ 0) corresponds to almost grid-independent 

behavior of the calculated values in Case V(MS2). Moreover, the accuracy of the post-processing of the 

data is first order in the present analysis. Thus, the results for Case V(MS2) would be quite reasonable 

for the friction resistance. The observed order of accuracy of the local flow quantities, however, is lower 

than expected. The reason of this deterioration of the grid convergence requires further investigation. 

In Cases V(MS1) and VT(MS1), large or small values of p are mainly due to the awkward behavior 

of the profiles. It is conjectured that this unfavorable behavior of Case V(MS1) might come from the 

inconsistency of the second-order discretization of the present solver and the first-order source function 

added to the momentum equation in a volumetric form.  

39.9102.97102.18

24.366.272.314.352.244.370.599.485.6

57.0496.0663.024.71.1084.203.1119.685.2

032.00324.00469.028.079.050.182.045.061.0

  VT(MS1)V(MS1)V(MS2)VT(MS1)V(MS1)V(MS2)VT(MS1)V(MS1)V(MS2)(%)Error    
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    In Case VT(MS1), the reason of the non-monotonic behavior would be more complex. As 

mentioned by Eça et al. [1], the near-wall destruction term, of which the value is constant near the wall 

with MS1, is considered to be responsible for the numerical instability also in the present simulation. 

However, the cause is not yet specified, and further investigation is also necessary for results with the 

MS1 profile. 

    The numerical errors of calculated values from exact manufactured solutions are shown for the 

finest grid (GMS1) in Table 4. The discrepancy for the pressure and wall-normal velocity is quite large 

near the wall. The absolute error decreases with the grid refinement, but the convergence of the error 

field is not satisfactory both in the local and global sense for some unknown factors in the present 

results. 

 

B. Backward facing step 

1) Grid Description 

For the simulation of the flow over a backward facing step, a set of orthogonal grids are prepared as 

shown in Fig. 4. The whole computational domain consists of three blocks. Nonuniform grids with a 

hyperbolic tangent distribution are employed both in the x- and y- directions for denser meshes near the 

wall and the upper corner of the step. The number of grid points and the grid spacing in wall units are 

given in Table 5. 

 

2) Uncertainty Analysis 

All the grids in Table 5 are used for the uncertainty estimation. Figure 5 shows the computed results of 

the integral quantities with the grid refinement. The observed order of accuracy and the estimated 

uncertainty for the finest grid are also labeled in the figure. Good convergence with the uncertainty 

being less than 1% of the extrapolated value is attained in all the quantities except for the reattachment 

point, which exhibits some oscillatory behavior.  

 

 

  

x+1

x+2

y+1

y+2

Block I Block II

Block III

y+1

 

Fig. 4  Magnified view of the grid system  

for the backward facing step. 

( )

2.945.3226.1823.5541611 ,161611 ,16121

1.883.5117.3615.0161412 ,241412 ,24131

1.382.6212.9811.0181213 ,321213 ,32141

1.092.0910.378.69101014 ,401014 ,40151

×××

×××

×××

×××

× ++++

GBS4

GBS3

GBS2

GBS1

yyxxNN yx 2121III II, I,
∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆

Table 5.  Number of grid points with the grid spacing  

in each direction for the backward facing step. 
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Fig. 5  Convergence of the integral quantities: friction resistance of the bottom wall (Cf_bottom) and the 

top wall (Cf_top), pressure resistance of the bottom wall (Cp_bottom), and reattachment point. 

 

   

Fig. 6  Convergence of the local flow quantities at the three prescribed locations: (a) x = 0, y = 1.1h, (b) 

x = h, y = 0.1h, (c) x = 4h, y = 0.1h. 



2
nd
 Workshop on CFD Uncertainty Analysis, Lisbon, October 2006 

 

 

10 

10 

 

 

 

Fig. 6  (Cont.) 
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    Figure 6 shows the convergence behavior of the local flow quantities at the three prescribed 

locations. For the velocity and pressure fields, favorable convergence is obtained with the observed 

order of accuracy between 0.5 and 2. The eddy-viscosity field, on the other hand, exhibits some peculiar 

tendency: oscillation near the separation point (Fig. 6a), expected behavior with the first-order 

discretization (Fig. 6b), and almost constant values near the reattachment point (Fig. 6c). 

    The divergent case often appeared in the uncertainty estimation with the single-block grids 

employed in the last workshop [10], while the present analysis with orthogonal grids shows that most of 

the computed values are well in the asymptotic region. 

 

 

V  CONCLUSIONS 

Two test case problems for the two-dimensional, steady, incompressible, turbulent flows were 

calculated by the Navier-Stokes solver SURF with Spalart-Allmaras one-equation turbulence model, 

and the numerical uncertainty estimation based on the GCI method was performed in order to 

investigate the grid convergence behavior. 

    The manufactured solutions in a square domain proposed by Eça et al. [1] are simulated under 

different conditions. For the computation of the velocity and pressure fields with the fixed 

eddy-viscosity field, the reasonable grid-convergence behavior is obtained for the integral quantity 

when the MS2 profile is employed. The convergence behavior is not satisfactory when the MS1 profile 

is used. For the full computation of the flow and eddy-viscosity fields by using MS1 only as the 

boundary condition, the similar tendency to the previous case (fixed eddy viscosity with MS1) is 

observed and the local flow quantities are not completely converged. In each case, the computed values 

converge toward the manufactured solution, while the grid-convergence behavior that is expected from 

the formal order of accuracy has not yet been obtained by the present solver, and the observed accuracy 

of the local flow quantities is somewhat lower than expected. 

    The turbulent flow over a backward facing step (ERCOFTAC Database, Case-30) is also performed 

by using the SURF solver. Most of the present results obtained with orthogonal grids are considered to 

be in the asymptotic region. 
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